Photocatalytic hydrogen production of Melon/Azodiphenylamine polymers
Vol 4, Issue 2, 2021
VIEWS - 924 (Abstract) 214 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Zhu Q, Xu Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy and Environmental Science 2015; 8(2): 478–512.
2. Nasalevich MA, Becker R, Ramos-Fernandez EV, et al. Co@ NH2-MIL-125(Ti): Cobaloxime-derived metal-organic framework-based composite for light-driven H2 production. Energy and Environmental Science 2015; 8: 364–375.
3. Toyao T, Saito M, Horiuchi Y, et al. Efficient hydrogen production and photocatalytic reduction of nitrobenzene over a visible-light-responsive metal-organic framework photocatalyst. Catalysis Science & Technology 2013; 3: 2092–2096.
4. Yin S, Han J, Zhou T, et al. Recent progress in g-C3N4 based low cost photocatalytic system: Activity enhancement and emerging applications. Catalysis Science & Technology 2015; 5(12): 5048–5061.
5. Sun ZQ, Kim JH, Zhao Y, et al. Rational design of 3D dendritic TiO2 nanostructures with favorable architectures. Journal of the American Chemical Society 2011; 133(48): 19314–19317.
6. Wang G, Wang H, Li Y, et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters 2011; 11(7): 3026–3033.
7. Morgan DL, Liu HW, Frost RL, et al. Implications of precursor chemistry on the alkaline hydrothermal synthesis of titania/titanate nanostructures. The Journal of Physical Chemistry C 2010; 114(1): 101–110.
8. Fang Z, Liu Y, Shen J, et al. Epitaxial growth of CdS nanoparticle on Bi2S3 nanowire and photocatalytic application of the heterostructure. The Journal of Physical Chemistry C 2011; 115: 13968–13976.
9. Burtch NC, Jasuja H, Walton KS. Water stability and adsorption in metal-organic frameworks. Chemical Reviews 2014; 114(20): 10575–10612.
10. Chen B, Xiang S, Qian G. Metal-organic frameworks with functional pores for recognition of small molecules. Accounts of Chemical Research 2010; 43: 1115–1124.
11. Hoang S, Guo SW, Mullins CB. Coincorporation of N and Ta into TiO2 nanowires for visible light driven photoelectrochemical water oxidation. The Journal of Physical Chemistry C 2012; 116(44): 23283–23290.
12. Li DS, Soberanis F, Fu J, et al. Growth mechanism of highly branched titanium dioxide nanowires via oriented attachment. Crystal Growth & Design 2013; 13: 422–428.
DOI: https://doi.org/10.24294/ace.v4i2.1353
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.