Cancer vaccine therapy based on peptides

Masahiro Katsuda, Hiroki Yamaue

Article ID: 41
Vol 2, Issue 1, 2018

VIEWS - 1492 (Abstract) 1428 (PDF)

Abstract


Following numerous unequivocal clinical failures, immunotherapy has become an attractive therapeutic modality. Peptide vaccines are cost-effective compared to other vaccine approaches, and effective epitopes eliciting strong immune response can be selected experimentally in silico and ex vivo. However, the clinical benefits of cancer peptides vaccine have been disappointing in most studies; therefore, we need to prove the clinical beneficial effects for cancer treatment following induction of more powerful cytotoxic T lymphocytes (CTLs). First, the choice of ideal target antigen is essential. Epitopes derived from tumor-associated antigens (TAAs), oncoantigens, vascular endothelial cells and neoantigens are then developed. In particular, whole-exome sequencing enables us to identify epitopes of neoantigens. The choice of therapeutic objectives is also important and peptide vaccines might be better to be developed as preventative vaccines. Dendritic cells (DCs) vaccine pulsed with peptides is an approach to induce powerful CTLs and might overcome several disadvantages of peptide vaccines as monotherapy. Targeting vaccine therapy against DC subsets in vivo is under development.Following numerous unequivocal clinical failures, immunotherapy has become an attractive therapeuticmodality. Peptide vaccines are cost-effective compared to other vaccine approaches, and effective epitopeseliciting strong immune response can be selected experimentally in silico and ex vivo. However, the clinicalbenefits of cancer peptides vaccine have been disappointing in most studies; therefore, we need to prove theclinical beneficial effects for cancer treatment following induction of more powerful cytotoxic T lymphocytes(CTLs). First, the choice of ideal target antigen is essential. Epitopes derived from tumor-associated antigens(TAAs), oncoantigens, vascular endothelial cells and neoantigens are then developed. In particular, wholeexomesequencing enables us to identify the epitopes of neoantigens. The choice of therapeutic objectives isalso important and peptide vaccines might be better to be developed as preventative vaccines. Dendritic cells(DCs) vaccine pulsed with peptides is an approach to induce powerful CTLs and might overcome severaldisadvantages of peptide vaccines as monotherapy. Targeting vaccine therapy against DC subsets in vivo isunder development.

Keywords


immunotherapy; peptide vaccine; tumor-associated antigen; oncoantigen; VEGFR2; neoantigen; dendritic cells

Full Text:

PDF


References


1. Nordlund JJ, Kirkwood JM, Forget BM, et al. Vitiligo in patients with metastatic melanoma: A good prognostic sign. J Am Acad Dermatol 1983; 9(5): 689–696. doi: 10.1016/S0190-9622(83)70182-9.

2. Townsend KN, Spowart JE, Huwait H, et al. Markers of T cell infiltration and function associate with favorable outcome in vascularized high-grade serous ovarian carcinoma. PoS One 2013; 8(12): e82406. doi: 10.1371/journal.pone.0082406.

3. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev 1999; 170: 85–100. doi: 10.1111/j.1600-065X.1999.tb01331.x.

4. Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: Toward combination strategies with curative potential. Cell 2015; 161(2): 205–214. doi: 10.1016/j.cell.2015.03.030.

5. Seidel JA, Otsuka A, Kabashima K. Treating tumors with immune checkpoint inhibitors: Rationale and limitations. Trends Immunother 2017; 1(1). doi: 10.24294/ti.v1.i1.20. In Press.

6. Brentjens RJ, Riviere I, Park JH, et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011; 118(18): 4817–4828. doi: 10.1182/blood-2011-04-348540.

7. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38. doi: 10.1126/scitranslmed.3005930.

8. Maude SL, Frey N, Shaw PA, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. New Engl J Med 2014; 371(16): 1507–1517. doi: 10.1056/NEJMoa1407222.

9. Porter DL, Levine BL, Kalos M, et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New Engl J Med 2011; 365(8): 725–733. doi: 10.1056/NEJMoa1103849.

10. Ramachandran M, Dimberg A, Essand M. The cancer-immunity cycle as rational design for synthetic cancer drugs: Novel DC vaccines and CAR T-cells. Semin Cancer Biol 2017. doi: 10.1016/j.semcancer.2017.02.010. In Press.

11. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: Moving beyond current vaccines. Nat Med 2004; 10(9): 909–915. doi: 10.1038/nm1100.

12. Longo DL. New therapies for castration-resistant prostate cancer. New Engl J Med 2010; 363(5): 479–481. doi: 10.1056/NEJMe1006300.

13. Melero I, Gaudernack G, Gerritsen W, et al. Therapeutic vaccines for cancer: An overview of clinical trials. Nat Rev Clin Oncol 2014; 11(9): 509–524. doi: 10.1038/nrclinonc.2014.111.

14. Cheever MA, Allison JP, Ferris AS, et al. The prioritization of cancer antigens: A national cancer institute pilot project for the acceleration of translational research. Clin Cancer Res 2009; 15(17): 5323–5337. doi: 10.1158/1078-0432.ccr-09-0737.

15. Huff V. Wilms’ tumours: About tumour suppressor genes, an oncogene and a chameleon gene. Nat Rev Cancer 2011; 11(2): 111–121. doi: 10.1038/nrc3002.

16. Sugiyama H. WT1 (Wilms’ tumor gene 1): Biology and cancer immunotherapy. Jpn J Clin Oncol 2010; 40(5): 377–387. doi: 10.1093/jjco/hyp194.

17. Oji Y, Kitamura Y, Kamino E, et al. WT1 IgG antibody for early detection of nonsmall cell lung cancer and as its prognostic factor. Int J Cancer 2009; 125(2): 381–387. doi: 10.1002/ijc.24367.

18. Rezvani K, Brenchley JM, Price DA, et al. T-cell responses directed against multiple HLA-A*0201-restricted epitopes derived from Wilms’ tumor 1 protein in patients with leukemia and healthy donors: Identification, quantification, and characterization. Clin Cancer Res 2005; 11(24 Pt 1): 8799–8807. doi: 10.1158/1078-0432.ccr-05-1314.

19. Miyatake T, Ueda Y, Morimoto A, et al. WT1 peptide immunotherapy for gynecologic malignancies resistant to conventional therapies: A phase II trial. J Cancer Res Clin Oncol 2013; 139(3): 457–463. doi: 10.1007/s00432-012-1348-2.

20. Oji Y, Hashimoto N, Tsuboi A, et al. Association of WT1 IgG antibody against WT1 peptide with prolonged survival in glioblastoma multiforme patients vaccinated with WT1 peptide. Int J Cancer 2016; 139(6): 1391–1401. doi: 10.1002/ijc.30182.

21. Okabe H, Satoh S, Kato T, et al. Genome-wide analysis of gene expression in human hepatocellular carcinomas using cDNA microarray: Identification of genes involved in viral carcinogenesis and tumor progression. Cancer Res 2001; 61(5): 2129–2137.

22. Chiarle R, Martinengo C, Mastini C, et al. The anaplastic lymphoma kinase is an effective oncoantigen for lymphoma vaccination. Nat Med 2008; 14(6): 676–680. doi: 10.1038/nm1769.

23. Mastini C, Martinengo C, Inghirami G, et al. Anaplastic lymphoma kinase: An oncogene for tumor vaccination. J Mol Med 2009; 87(7): 669–677. doi: 10.1007/s00109-009-0460-5.

24. Osawa R, Tsunoda T, Yoshimura S, et al. Identification of HLA-A24-restricted novel T cell epitope peptides derived from P-cadherin and kinesin family member 20A. J Biomed Biotechnol 2012; 2012: 848042. doi: 10.1155/2012/848042.

25. Suda T, Tsunoda T, Daigo Y, et al. Identification of human leukocyte antigen-A24-restricted epitope peptides derived from gene products upregulated in lung and esophageal cancers as novel targets for immunotherapy. Cancer Sci 2007; 98(11): 1803–1808. doi: 10.1111/j.1349-7006.2007.00603.x.

26. Kanehira M, Harada Y, Takata R, et al. Involvement of upregulation of DEPDC1 (DEP domain containing 1) in bladder carcinogenesis. Oncogene 2007; 26(44): 6448–6455. doi: 10.1038/sj.onc.1210466.

27. Yokomine K, Senju S, Nakatsura T, et al. The forkhead box M1 transcription factor as a candidate of target for anti-cancer immunotherapy. Int J Cancer 2010; 126(9): 2153–2163. doi: 10.1002/ijc.24836.

28. Harao M, Hirata S, Irie A, et al. HLA-A2-restricted CTL epitopes of a novel lung cancer-associated cancer testis antigen, cell division cycle associated 1, can induce tumor-reactive CTL. Int J Cancer 2008; 123(11): 2616–2625. doi: 10.1002/ijc.23823.

29. Imai K, Hirata S, Irie A, et al. Identification of a novel tumor-associated antigen, cadherin 3/P-cadherin, as a possible target for immunotherapy of pancreatic, gastric, and colorectal cancers. Clin Cancer Res 2008; 14(20): 6487–6495. doi: 10.1158/1078-0432.ccr-08-1086.

30. Tomita Y, Harao M, Senju S, et al. Peptides derived from human insulin-like growth factor-II mRNA binding protein 3 can induce human leukocyte antigen-A2-restricted cytotoxic T lymphocytes reactive to cancer cells. Cancer Sci 2011; 102(1): 71–78. doi: 10.1111/j.1349-7006.2010.01780.x.

31. Asahara S, Takeda K, Yamao K, et al. Phase I/II clinical trial using HLA-A24-restricted peptide vaccine derived from KIF20A for patients with advanced pancreatic cancer. J Transl Med 2013; 11: 291. doi: 10.1186/1479-5876-11-291.

32. Iwahashi M, Katsuda M, Nakamori M, et al. Vaccination with peptides derived from cancer-testis antigens in combination with CpG-7909 elicits strong specific CD8+ T cell response in patients with metastatic esophageal squamous cell carcinoma. Cancer Sci 2010; 101(12): 2510–2517. doi: 10.1111/j.1349-7006.2010.01732.x.

33. Yoshitake Y, Fukuma D, Yuno A, et al. Phase II clinical trial of multiple peptide vaccination for advanced head and neck cancer patients revealed induction of immune responses and improved OS. Clin Cancer Res 2015; 21(2): 312–321. doi: 10.1158/1078-0432.ccr-14-0202.

34. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of “tumor escape” phenotypes. Nat Immunol 2002; 3(11): 999–1005. doi: 10.1038/ni1102-999.

35. Ryschich E, Notzel T, Hinz U, et al. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin Cancer Res 2005; 11(2 Pt 1): 498–504.

36. Olofsson B, Korpelainen E, Pepper MS, et al. Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. P Natl Acad Sci USA 1998; 95(20): 11709–11714. doi: 10.1073/pnas.95.20.11709.

37. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72(6): 835–846. doi: 10.1016/0092-8674(93)90573-9.

38. Folkman J. Tumor angiogenesis: Therapeutic implications. New Engl J Med 1971; 285(21): 1182–1186. doi: 10.1056/nejm197111182852108.

39. Ishizaki H, Tsunoda T, Wada S, et al. Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin Cancer Res 2006; 12(19): 5841–5849. doi: 10.1158/1078-0432.ccr-06-0750.

40. Hayashi H, Kurata T, Fujisaka Y, et al. Phase I trial of OTS11101, an anti-angiogenic vaccine targeting vascular endothelial growth factor receptor 1 in solid tumor. Cancer Sci 2013; 104(1): 98–104. doi: 10.1111/cas.12034.

41. Wada S, Tsunoda T, Baba T, et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res 2005; 65(11): 4939–4946. doi: 10.1158/0008-5472.can-04-3759.

42. Miyazawa M, Ohsawa R, Tsunoda T, et al. Phase I clinical trial using peptide vaccine for human vascular endothelial growth factor receptor 2 in combination with gemcitabine for patients with advanced pancreatic cancer. Cancer Sci 2010; 101(2): 433–439. doi: 10.1111/j.1349-7006.2009.01416.x.

43. Yamaue H, Tsunoda T, Tani M, et al. Randomized phase II/III clinical trial of elpamotide for patients with advanced pancreatic cancer: PEGASUS-PC Study. Cancer Sci 2015; 106(7): 883–890. doi: 10.1111/cas.12674.

44. Middleton G, Silcocks P, Cox T, et al. Gemcitabine and capecitabine with or without telomerase peptide vaccine GV1001 in patients with locally advanced or metastatic pancreatic cancer (TeloVac): An open-label, randomised, phase 3 trial. Lancet Oncol 2014; 15(8): 829–840. doi: 10.1016/s1470-2045(14)70236-0.

45. Butts C, Socinski MA, Mitchell PL, et al. Tecemotide (L-BLP25) versus placebo after chemoradiotherapy for stage III non-small-cell lung cancer (START): A randomised, double-blind, phase 3 trial. Lancet Oncol 2014; 15(1): 59–68. doi: 10.1016/s1470-2045(13)70510-2.

46. Katakami N, Hida T, Nokihara H, et al. Phase I/II study of tecemotide as immunotherapy in Japanese patients with unresectable stage III non-small cell lung cancer. Lung Cancer 2017; 105: 23–30. doi: 10.1016/j.lungcan.2017.01.007.

47. Schuster J, Lai RK, Recht LD, et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: The ACT III study. Neuro-oncology 2015; 17(6): 854–861. doi: 10.1093/neuonc/nou348.

48. Sabado RL, Balan S, Bhardwaj N. Dendritic cell-based immunotherapy. Cell Res 2017; 27(1): 74–95. doi: 10.1038/cr.2016.157.

49. Walter S, Weinschenk T, Stenzl A, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med 2012; 18(8): 1254–1261. doi: 10.1038/nm.2883.

50. Kono K, Iinuma H, Akutsu Y, et al. Multicenter, phase II clinical trial of cancer vaccination for advanced esophageal cancer with three peptides derived from novel cancer-testis antigens. J Translat Med 2012; 10: 141. doi: 10.1186/1479-5876-10-141.

51. Hazama S, Nakamura Y, Takenouchi H, et al. A phase I study of combination vaccine treatment of five therapeutic epitope-peptides for metastatic colorectal cancer; safety, immunological response, and clinical outcome. J Translat Med 2014; 12: 63. doi: 10.1186/1479-5876-12-63.

52. Rini BI, Stenzl A, Zdrojowy R, et al. IMA901, a multipeptide cancer vaccine, plus sunitinib versus sunitinib alone, as first-line therapy for advanced or metastatic renal cell carcinoma (IMPRINT): A multicentre, open-label, randomised, controlled, phase 3 trial. Lancet Oncol 2016; 17(11): 1599–1611. doi: 10.1016/s1470-2045(16)30408-9.

53. Suzuki N, Hazama S, Iguchi H, et al. Phase II clinical trial of peptide cocktail therapy for patients with advanced pancreatic cancer: VENUS-PC study. Cancer Sci 2017; 108(1): 73–80. doi: 10.1111/cas.13113.

54. Stone JD, Harris DT, Kranz DM. TCR affinity for p/MHC formed by tumor antigens that are self-proteins: Impact on efficacy and toxicity. Curr Opin Immunol 2015; 33: 16–22. doi: 10.1016/j.coi.2015.01.003.

55. Yadav M, Jhunjhunwala S, Phung QT, et al. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014; 515(7528): 572–576. doi: 10.1038/nature14001.

56. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015; 348(6230): 69–74. doi: 10.1126/science.aaa4971.

57. Cai A, Keskin DB, DeLuca DS, et al. Mutated BCR-ABL generates immunogenic T-cell epitopes in CML patients. Clin Cancer Res 2012; 18(20): 5761–5772. doi: 10.1158/1078-0432.ccr-12-1182.

58. Sampson JH, Heimberger AB, Archer GE, et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28(31): 4722–4729. doi: 10.1200/jco.2010.28.6963.

59. Stronen E, Toebes M, Kelderman S, et al. Targeting of cancer neoantigens with donor-derived T cell receptor repertoires. Science 2016; 352(6291): 1337–1341. doi: 10.1126/science.aaf2288.

60. Deng X, Nakamura Y. Cancer precision medicine: From cancer screening to drug selection and personalized immunotherapy. Trends Pharmacol Sci 2017; 38(1): 15–24. doi: 10.1016/j.tips.2016.10.013.

61. Carreno BM, Magrini V, Becker-Hapak M, et al. Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of melanoma neoantigen-specific T cells. Science 2015; 348(6236): 803–808. doi: 10.1126/science.aaa3828.

62. Kranz LM, Diken M, Haas H, et al. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016; 534(7607): 396–401. doi: 10.1038/nature18300.

63. Yang A, Farmer E, Wu TC, et al. Perspectives for therapeutic HPV vaccine development. J Biomed Sci 2016; 23(1): 75. doi: 10.1186/s12929-016-0293-9.

64. Lee JH, Lee JH, Lim YS, et al. Adjuvant immunotherapy with autologous cytokine-induced killer cells for hepatocellular carcinoma. Gastroenterology 2015; 148(7): 1383–1391.e6. doi: 10.1053/j.gastro.2015.02.055.

65. Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol 2015; 16(5): 522–530. doi: 10.1016/s1470-2045(15)70122-1.

66. Miyazawa M, Katsuda M, Maguchi H, et al. Phase II clinical trial using novel peptide cocktail vaccine as a postoperative adjuvant treatment for surgically resected pancreatic cancer patients. Int J Cancer 2017; 140(4): 973–982. doi: 10.1002/ijc.30510.

67. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer 2012; 12(4): 265–277. doi: 10.1038/nrc3258.

68. De Vries IJ, Krooshoop DJ, Scharenborg NM, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res 2003; 63(1): 12–17.

69. Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193(2): 233–238. doi: 10.1084/jem.193.2.233.

70. Cools N, Ponsaerts P, Van Tendeloo VF, et al. Balancing between immunity and tolerance: An interplay between dendritic cells, regulatory T cells, and effector T cells. J Leukocyte Biol 2007; 82(6): 1365–1374. doi: 10.1189/jlb.0307166.

71. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood 2002; 100(1): 174–177. doi: 10.1182/blood.V100.1.174.

72. Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4: 56. doi: 10.1186/s40425-016-0160-y.

73. Katsuda M, Iwahashi M, Matsuda K, et al. Comparison of different classes of CpG-ODN in augmenting the generation of human epitope peptide-specific CTLs. Int J Oncol 2011; 39(5): 1295–1302. doi: 10.3892/ijo.2011.1146.

74. Melief CJ, van der Burg SH. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer 2008; 8(5): 351–360. doi: 10.1038/nrc2373.

75. Bijker MS, van den Eeden SJ, Franken KL, et al. Superior induction of anti-tumor CTL immunity by extended peptide vaccines involves prolonged, DC-focused antigen presentation. Eur J Immunol 2008; 38(4): 1033–1042. doi: 10.1002/eji.200737995.

76. Hirayama M, Nishimura Y. The present status and future prospects of peptide-based cancer vaccines. Int Immunol 2016; 28(7): 319–328. doi: 10.1093/intimm/dxw027.

77. Leffers N, Lambeck AJ, Gooden MJ, et al. Immunization with a P53 synthetic long peptide vaccine induces P53-specific immune responses in ovarian cancer patients, a phase II trial. Int J Cancer 2009; 125(9): 2104–2113. doi: 10.1002/ijc.24597.

78. Francois V, Ottaviani S, Renkvist N, et al. The CD4(+) T-cell response of melanoma patients to a MAGE-A3 peptide vaccine involves potential regulatory T cells. Cancer Res 2009; 69(10): 4335–4345. doi: 10.1158/0008-5472.can-08-3726.

79. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. New Engl J Med 2010; 363(5): 411–422. doi: 10.1056/NEJMoa1001294.

80. Kimura Y, Tsukada J, Tomoda T, et al. Clinical and immunologic evaluation of dendritic cell-based immunotherapy in combination with gemcitabine and/or S-1 in patients with advanced pancreatic carcinoma. Pancreas 2012; 41(2): 195–205. doi: 10.1097/MPA.0b013e31822398c6.

81. Kobayashi M, Shimodaira S, Nagai K, et al. Prognostic factors related to add-on dendritic cell vaccines on patients with inoperable pancreatic cancer receiving chemotherapy: A multicenter analysis. Cancer Immunol Immunother 2014; 63(8): 797–806. doi: 10.1007/s00262-014-1554-7.

82. Mayanagi S, Kitago M, Sakurai T, et al. Phase I pilot study of Wilms tumor gene 1 peptide-pulsed dendritic cell vaccination combined with gemcitabine in pancreatic cancer. Cancer Sci 2015; 106(4): 397–406. doi: 10.1111/cas.12621.

83. Koido S, Homma S, Okamoto M, et al. Treatment with chemotherapy and dendritic cells pulsed with multiple Wilms’ tumor 1 (WT1)-specific MHC class I/II-restricted epitopes for pancreatic cancer. Clin Cancer Res 2014; 20(16): 4228–4239. doi: 10.1158/1078-0432.ccr-14-0314.

84. Trumpfheller C, Longhi MP, Caskey M, et al. Dendritic cell-targeted protein vaccines: A novel approach to induce T-cell immunity. J Intern Med 2012; 271(2): 183–192. doi: 10.1111/j.1365-2796.2011.02496.x.

85. Hartung E, Becker M, Bachem A, et al. Induction of potent CD8 T cell cytotoxicity by specific targeting of antigen to cross-presenting dendritic cells in vivo via murine or human XCR1. J Immunol 2015; 194(3): 1069–1079. doi: 10.4049/jimmunol.1401903.

86. Gudjonsson A, Lysen A, Balan S, et al. Targeting influenza virus hemagglutinin to Xcr1+ dendritic cells in the absence of receptor-mediated endocytosis enhances protective antibody responses. J Immunol 2017; 198(7): 2785–2795. doi: 10.4049/jimmunol.1601881.




DOI: https://doi.org/10.24294/ti.v1.i1.41

Refbacks

  • There are currently no refbacks.


Copyright (c) 2017 Masahiro Katsuda, Hiroki Yamaue

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.