References
Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians. 2018; 68(6): 394-424. doi: 10.3322/caac.21492
Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. The EMBO Journal. 1990; 9(8): 2431-2438. doi: 10.1002/j.1460-2075.1990.tb07419.x
Welsh GI, Proud CG. Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochemical Journal. 1993; 294(3): 625-629. doi: 10.1042/bj2940625
Cohen P, Frame S. The renaissance of GSK3. Nature Reviews Molecular Cell Biology. 2001; 2(10): 769-776. doi: 10.1038/35096075
Duda P, Akula SM, Abrams SL, et al. Targeting GSK3 and Associated Signaling Pathways Involved in Cancer. Cells. 2020; 9(5): 1110. doi: 10.3390/cells9051110
Jope RS, Johnson GVW. The glamour and gloom of glycogen synthase kinase-3. Trends in Biochemical Sciences. 2004; 29(2): 95-102. doi: 10.1016/j.tibs.2003.12.004
Medina M, Castro A. Glycogen synthase kinase-3 (GSK-3) inhibitors reach the clinic. Curr Opin Drug Discov Devel. 2008; 11:533-43.
Garcea G, Manson M, Neal C, et al. Glycogen Synthase Kinase-3 Beta; A New Target in Pancreatic Cancer? Current Cancer Drug Targets. 2007; 7(3): 209-215. doi: 10.2174/156800907780618266
Obligado SH, Ibraghimov-Beskrovnaya O, Zuk A, et al. CDK/GSK-3 inhibitors as therapeutic agents for parenchymal renal diseases. Kidney International. 2008; 73(6): 684-690. doi: 10.1038/sj.ki.5002731
Dewhurst S, Maggirwar SB, Schifitto G, et al. Glycogen Synthase Kinase 3 Beta (GSK-3β) as a Therapeutic Target in NeuroAIDS. Journal of Neuroimmune Pharmacology. 2006; 2(1): 93-96. doi: 10.1007/s11481-006-9051-1
MacAulay K, Doble BW, Patel S, et al. Glycogen Synthase Kinase 3α-Specific Regulation of Murine Hepatic Glycogen Metabolism. Cell Metabolism. 2007; 6(4): 329-337. doi: 10.1016/j.cmet.2007.08.013
Piazza F, Manni S, Tubi LQ, et al. Glycogen Synthase Kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer. 2010; 10(1). doi: 10.1186/1471-2407-10-526
Wilson W, Baldwin AS. Maintenance of Constitutive IκB Kinase Activity by Glycogen Synthase Kinase-3α/β in Pancreatic Cancer. Cancer Research. 2008; 68(19): 8156-8163. doi: 10.1158/0008-5472.can-08-1061
Forde JE, Dale TC. Glycogen synthase kinase 3: A key regulator of cellular fate. Cellular and Molecular Life Sciences. 2007; 64(15): 1930-1944. doi: 10.1007/s00018-007-7045-7
Liang MH, Chuang DM. Differential Roles of Glycogen Synthase Kinase-3 Isoforms in the Regulation of Transcriptional Activation. Journal of Biological Chemistry. 2006; 281(41): 30479-30484. doi: 10.1074/jbc.m607468200
Hoeflich KP, Luo J, Rubie EA, et al. Requirement for glycogen synthase kinase-3β in cell survival and NF-κB activation. Nature. 2000; 406(6791): 86-90. doi: 10.1038/35017574
Borden BA, Baca Y, Xiu J, et al. The Landscape of Glycogen Synthase Kinase-3 Beta Genomic Alterations in Cancer. Molecular Cancer Therapeutics. 2021; 20(1): 183-190. doi: 10.1158/1535-7163.mct-20-0497
Grassilli E, Ianzano L, Bonomo S, et al. GSK3A Is Redundant with GSK3B in Modulating Drug Resistance and Chemotherapy-Induced Necroptosis. Condorelli G, ed. PLoS ONE. 2014; 9(7): e100947. doi: 10.1371/journal.pone.0100947
Gao L, Lu Y, Chen HN, et al. Deciphering the Clinical Significance and Kinase Functions of GSK3α in Colon Cancer by Proteomics and Phosphoproteomics. Molecular & Cellular Proteomics. 2023; 22(5): 100545. doi: 10.1016/j.mcpro.2023.100545
Guil-Luna S, Rivas-Crespo A, Navarrete-Sirvent C, et al. Clinical significance of glycogen synthase kinase 3 (GSK-3) expression and tumor budding grade in colorectal cancer: Implications for targeted therapy. Biomedicine & Pharmacotherapy. 2023; 167: 115592. doi: 10.1016/j.biopha.2023.115592
Cao X, Wu W, Wang D, et al. Glycogen synthase kinase GSK3α promotes tumorigenesis by activating HIF1/VEGFA signaling pathway in NSCLC tumor. Cell Communication and Signaling. 2022; 20(1). doi: 10.1186/s12964-022-00825-3
Kaur J. Prognostic Effect of Glycogen Synthase Kinase 3A (GSK3A) mRNA Expression in Breast Cancer Patients. American Journal of Biomedical Sciences. Published online April 2022: 58-71. doi: 10.5099/aj220200058
Kovács SA, Fekete JT, Győrffy B. Predictive biomarkers of immunotherapy response with pharmacological applications in solid tumors. Acta Pharmacologica Sinica. 2023; 44(9): 1879-1889. doi: 10.1038/s41401-023-01079-6
Győrffy B. Discovery and ranking of the most robust prognostic biomarkers in serous ovarian cancer. GeroScience. 2023; 45(3): 1889-1898. doi: 10.1007/s11357-023-00742-4
Liu H. Microarray probes and probe sets. Frontiers in Bioscience. 2010; E2(1): 325-338. doi: 10.2741/e93
Siegel RL, Miller KD, Goding Sauer A, et al. Colorectal cancer statistics, 2020. CA: A Cancer Journal for Clinicians. 2020; 70(3): 145-164. doi: 10.3322/caac.21601
Ansa B, Coughlin S, Alema-Mensah E, et al. Evaluation of Colorectal Cancer Incidence Trends in the United States (2000–2014). Journal of Clinical Medicine. 2018; 7(2): 22. doi: 10.3390/jcm7020022
Ali A, Hoeflich KP, Woodgett JR. Glycogen Synthase Kinase-3: Properties, Functions, and Regulation. Chemical Reviews. 2001; 101(8): 2527-2540. doi: 10.1021/cr000110o
Luo J. Glycogen synthase kinase 3β (GSK3β) in tumorigenesis and cancer chemotherapy. Cancer Letters. 2009; 273(2): 194-200. doi: 10.1016/j.canlet.2008.05.045
McCubrey JA, Davis NM, Abrams SL, et al. Diverse roles of GSK-3: Tumor promoter–tumor suppressor, target in cancer therapy. Advances in Biological Regulation. 2014; 54: 176-196. doi: 10.1016/j.jbior.2013.09.013
McCubrey JA, Fitzgerald TL, Yang LV, et al. Roles of GSK-3 and microRNAs on epithelial mesenchymal transition and cancer stem cells. Oncotarget. 2016; 8(8): 14221-14250. doi: 10.18632/oncotarget.13991
Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. Journal of Cell Science. 2003; 116(7): 1175-1186. doi: 10.1242/jcs.00384
Vidri RJ, Fitzgerald TL. GSK-3: An important kinase in colon and pancreatic cancers. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research. 2020; 1867(4): 118626. doi: 10.1016/j.bbamcr.2019.118626
Valvezan AJ, Zhang F, Diehl JA, et al. Adenomatous Polyposis Coli (APC) Regulates Multiple Signaling Pathways by Enhancing Glycogen Synthase Kinase-3 (GSK-3) Activity. Journal of Biological Chemistry. 2012; 287(6): 3823-3832. doi: 10.1074/jbc.m111.323337
Shakoori A, Ougolkov A, Yu ZW, et al. Deregulated GSK3β activity in colorectal cancer: Its association with tumor cell survival and proliferation. Biochemical and Biophysical Research Communications. 2005; 334(4): 1365-1373. doi: 10.1016/j.bbrc.2005.07.041
Ougolkov AV, Fernandez-Zapico ME, Bilim VN, et al. Aberrant Nuclear Accumulation of Glycogen Synthase Kinase-3β in Human Pancreatic Cancer: Association with Kinase Activity and Tumor Dedifferentiation. Clinical Cancer Research. 2006; 12(17): 5074-5081. doi: 10.1158/1078-0432.ccr-06-0196
Ougolkov AV, Bone ND, Fernandez-Zapico ME, et al. Inhibition of glycogen synthase kinase-3 activity leads to epigenetic silencing of nuclear factor κB target genes and induction of apoptosis in chronic lymphocytic leukemia B cells. Blood. 2007; 110(2): 735-742. doi: 10.1182/blood-2006-12-060947
Kunnimalaiyaan M, Vaccaro AM, Ndiaye MA, et al. Inactivation of glycogen synthase kinase-3β, a downstream target of the raf-1 pathway, is associated with growth suppression in medullary thyroid cancer cells. Molecular Cancer Therapeutics. 2007; 6(3): 1151-1158. doi: 10.1158/1535-7163.mct-06-0665
Adler JT, Cook M, Luo Y, et al. Tautomycetin and tautomycin suppress the growth of medullary thyroid cancer cells via inhibition of glycogen synthase kinase-3β. Molecular Cancer Therapeutics. 2009; 8(4): 914-920. doi: 10.1158/1535-7163.mct-08-0712
Carter YM, Kunnimalaiyaan S, Chen H, et al. Specific glycogen synthase kinase-3 inhibition reduces neuroendocrine markers and suppresses neuroblastoma cell growth. Cancer Biology & Therapy. 2014; 15(5): 510-515. doi: 10.4161/cbt.28015
Ougolkov AV, Fernandez-Zapico ME, Savoy DN, et al. Glycogen Synthase Kinase-3β Participates in Nuclear Factor κB–Mediated Gene Transcription and Cell Survival in Pancreatic Cancer Cells. Cancer Research. 2005; 65(6): 2076-2081. doi: 10.1158/0008-5472.can-04-3642
Kunnimalaiyaan S, Clark Gamblin T, Kunnimalaiyaan M. Glycogen synthase kinase-3 inhibitor AR-A014418 suppresses pancreatic cancer cell growth via inhibition of GSK-3-mediated Notch1 expression. HPB. 2015; 17(9): 770-776. doi: 10.1111/hpb.12442
Thapa R, Gupta G, Bhat AA, et al. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. International Journal of Biological Macromolecules. 2023; 253: 127375. doi: 10.1016/j.ijbiomac.2023.127375
Sahin I, Eturi A, De Souza A, et al. Glycogen synthase kinase-3 beta inhibitors as novel cancer treatments and modulators of antitumor immune responses. Cancer Biology & Therapy. 2019; 20(8): 1047-1056. doi: 10.1080/15384047.2019.1595283
Augello G, Emma MR, Cusimano A, et al. The Role of GSK-3 in Cancer Immunotherapy: GSK-3 Inhibitors as a New Frontier in Cancer Treatment. Cells. 2020; 9(6): 1427. doi: 10.3390/cells9061427
Walz A, Ugolkov A, Chandra S, et al. Molecular Pathways: Revisiting Glycogen Synthase Kinase-3β as a Target for the Treatment of Cancer. Clinical Cancer Research. 2017; 23(8): 1891-1897. doi: 10.1158/1078-0432.ccr-15-2240
Madhunapantula SV, Sharma A, Gowda R, et al. Identification of glycogen synthase kinase 3α as a therapeutic target in melanoma. Pigment Cell & Melanoma Research. 2013; 26(6): 886-899. doi: 10.1111/pcmr.12156
Sharma A, Sharma AK, Madhunapantula SV, et al. Targeting Akt3 Signaling in Malignant Melanoma Using Isoselenocyanates. Clinical Cancer Research. 2009; 15(5): 1674-1685. doi: 10.1158/1078-0432.ccr-08-2214
Nakayama M, Oshima M. Mutant p53 in colon cancer. Journal of Molecular Cell Biology. 2018; 11(4): 267-276. doi: 10.1093/jmcb/mjy075
Schubbert S, Shannon K, Bollag G. Hyperactive Ras in developmental disorders and cancer. Nature Reviews Cancer. 2007; 7(4): 295-308. doi: 10.1038/nrc2109
Dinu D, Dobre M, Panaitescu E. et al. Prognostic significance of KRAS gene mutations in colorectal cancer--preliminary study. J Med Life. 2014; 7: 581-7.
Caputo F, Santini C, Bardasi C, et al. BRAF-Mutated Colorectal Cancer: Clinical and Molecular Insights. International Journal of Molecular Sciences. 2019; 20(21): 5369. doi: 10.3390/ijms20215369
Tejpar S, Bertagnolli M, Bosman F, et al. Prognostic and Predictive Biomarkers in Resected Colon Cancer: Current Status and Future Perspectives for Integrating Genomics into Biomarker Discovery. The Oncologist. 2010; 15(4): 390-404. doi: 10.1634/theoncologist.2009-0233
Neumann JHL, Jung A, Kirchner T. Molekulare Pathologie des kolorektalen Karzinoms. Der Pathologe. 2015; 36(2): 137-144. doi: 10.1007/s00292-015-0005-3
Zeinalian M, Hashemzadeh-Chaleshtori M, Salehi R, Emami MH. Clinical Aspects of Microsatellite Instability Testing in Colorectal Cancer. Adv Biomed Res. 2018; 7:28. doi: 10.4103/abr.abr_185_16.
Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal cancer. Nature Medicine. 2015; 21(11): 1350-1356. doi: 10.1038/nm.3967
Peng Z, Ji Z, Mei F, et al. Lithium Inhibits Tumorigenic Potential of PDA Cells through Targeting Hedgehog-GLI Signaling Pathway. Xie J, ed. PLoS ONE. 2013; 8(4): e61457. doi: 10.1371/journal.pone.0061457
Acikgoz E, Güler G, Camlar M, et al. Glycogen synthase kinase-3 inhibition in glioblastoma multiforme cells induces apoptosis, cell cycle arrest and changing biomolecular structure. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2019; 209: 150-164. doi: 10.1016/j.saa.2018.10.036
Park R, Coveler AL, Cavalcante L, et al. GSK-3β in Pancreatic Cancer: Spotlight on 9-ING-41, Its Therapeutic Potential and Immune Modulatory Properties. Biology. 2021; 10(7): 610. doi: 10.3390/biology10070610
Schrecengost RS, Green CL, Zhuang Y, et al. In Vitro and In Vivo Antitumor and Anti-Inflammatory Capabilities of the Novel GSK3 and CDK9 Inhibitor ABC1183. Journal of Pharmacology and Experimental Therapeutics. 2018; 365(1): 107-116. doi: 10.1124/jpet.117.245738