Screen natural terpenoids to identify potential Jab1 inhibitors for treating breast cancer

Pratibha Pandey, Fahad Khan, Kiran Yadav, Kartikey Singh, Akhlakur Rehman, Avijit Mazumder, Minhaj Ahmad Khan

Article ID: 2055
Vol 7, Issue 1, 2023

VIEWS - 404 (Abstract) 245 (PDF)

Abstract


Jab1 (c-Jun activation domain-binding protein-1) overexpression has been extensively linked to cancer development (or metastasis) in various malignancies by positively regulating cancer cell proliferation or inactivating several tumor suppressors. Recent research has focused on utilizing plant products to target crucial elements of dysregulated signaling pathways to elucidate a potent cancer therapeutic approach. Terpenoids have shown significant anti-inflammatory and anti-cancerous properties in a broader range of carcinomas by inducing apoptosis. Through an extensive literature search, we have selected only those terpenoids (from the NPACT database) that have not been explored against Jab1 (CSN5, COP9 signalosome subunit 5) in breast cancer for our research study. We have used two docking servers, PATCH DOCK, and CB DOCK, to find the binding interaction between selected terpenoids and Jab1. Further, we have also used SWISS ADME to investigate the pharmacokinetics of selected ligands. Amongst all selected ligands, lutein (belongs to the xanthophylls class) has displayed maximum binding energy in both CB Dock and Patch Dock analysis. Hence, our preliminary in silico results have shown lutein as the potent lead candidate for developing a better drug against breast cancer. However, more in silico and in vitro studies are still needed to validate the inhibitory potential of lutein terpenoid against Jab1 in breast cancer.


Keywords


Terpenoids; Jab1; Cancer; Docking; Breast Cancer; Signaling Pathway; Therapeutics

Full Text:

PDF


References


1. Waks AG, Winer EP. Breast cancer treatment: A review. JAMA 2019; 321(3): 288–300. doi: 10.1001/jama.2018.19323.

2. Sun YS, Zhao Z, Yang ZN, et al. Risk factors and preventions of breast cancer. International Journal of Biological Sciences 2017; 13(11): 1387–1397. doi: 10.7150/ijbs.21635.

3. Sharma GN, Dave R, Sanadya J, et al. Various types and management of breast cancer: An overview. Journal of Advanced Pharmaceutical Technology & Research 2010; 1(2): 109–126.

4. Sledge GW, Mamounas EP, Hortobagyi GN, et al. Past, present, and future challenges in breast cancer treatment. Journal of Clinical Oncology 2014; 32(19): 1979–1986. doi: 10.1200/JCO.2014.55.4139.

5. Colone M, Calcabrini A, Stringaro A. Drug delivery systems of natural products in oncology. Molecules 2020; 25(19): 4560. doi: 10.3390/molecules25194560.

6. Thompson HJ, Lutsiv T. Natural products in precision oncology: Plant-based small molecule inhibitors of protein kinases for cancer chemoprevention. Nutrients 2023; 15(5): 1192. doi: 10.3390/nu15051192.

7. Sznarkowska A, Kostecka A, Meller K, et al. Inhibition of cancer antioxidant defense by natural compounds. Oncotarget 2017; 8(9): 15996–16016. doi: 10.18632/oncotarget.13723.

8. Majolo F, Delwing LKDOB, Marmitt DJ, et al. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochemistry Letters 2019; 31: 196–207. doi: 10.1016/j.phytol.2019.04.003.

9. Zhou F, Pichersky E. More is better: The diversity of terpene metabolism in plants. Current Opinion in Plant Biology 2020; 55: 1–10. doi: 10.1016/j.pbi.2020.01.005.

10. Cox-Georgian D, Ramadoss N, Dona C, et al. Therapeutic and medicinal uses of terpenes. Medicinal Plants: From Farm to Pharmacy 2019; 12: 333–359. doi: 10.1007/978-3-030-31269-5_15.

11. Gonzalez-Burgos E, Gómez-Serranillos MP. Terpene compounds in nature: A review of their potential antioxidant activity. Current Medicinal Chemistry 2012; 19(31): 5319–5341. doi: 10.2174/092986712803833335.

12. Tomko AM, Whynot EG, O'Leary LF, et al. Anticancer potential of cannabis terpenes in a taxol-resistant model of breast cancer. Canadian Journal of Physiology and Pharmacology 2022; 100(8): 806–817. doi: 10.1139/cjpp-2021-0792.

13. Woollam M, Teli M, Liu S, et al. Urinary volatile terpenes analyzed by gas chromatography–mass spectrometry to monitor breast cancer treatment efficacy in mice. Journal of Proteome Research 2020; 19(5): 1913–1922. doi: 10.1021/acs.jproteome.9b00722.

14. Hakkim FL, Al-Buloshi M, Al-Sabahi J. Frankincense derived heavy terpene cocktail boosting breast cancer cell (MDA-MB-231) death in vitro. Asian Pacific Journal of Tropical Biomedicine 2015; 5(10): 824–828. doi: 10.1016/j.apjtb.2015.06.008.

15. Kovalchuk O, Li D, Rodriguez-Juarez R, et al. The effect of cannabis dry flower irradiation on the level of cannabinoids, terpenes and anticancer properties of the extracts. Biocatalysis and Agricultural Biotechnology 2020; 29: 101736. doi: 10.1016/j.bcab.2020.101736.

16. Yuan C, Wang D, Liu G, et al. Jab1/Cops5: A promising target for cancer diagnosis and therapy. International Journal of Clinical Oncology 2021; 26(7): 1159–1169. doi: 10.1007/s10147-021-01933-9.

17. Huang M, Lu JJ, Huang, MQ, et al Terpenoids: Natural products for cancer therapy. Expert Opinion on Investigational Drugs 2012: 21(12): 1801–1818. doi: 10.1517/13543784.2012.727395.

18. Ateba SB, Mvondo MA, Ngeu ST, et al. Natural terpenoids against female breast cancer: A 5-year recent research. Current Medicinal Chemistry 2018; 25(27): 3162–3213. doi: 10.2174/0929867325666180214110932.

19. Chopra B, Dhingra AK, Dhar KL, et al. Emerging role of terpenoids for the treatment of cancer: A review. Mini Reviews in Medicinal Chemistry 2021; 21(16): 2300–2336. doi: 10.2174/1389557521666210112143024.

20. Maennling AE, Tur MK, Niebert M, et al. Molecular targeting therapy against EGFR family in breast cancer: Progress and future potentials. Cancers 2019; 11(12): 1826. doi: 10.3390/cancers11121826.

21. Wu B, Pan Y, Liu G, et al. MRPS30-DT knockdown inhibits breast cancer progression by targeting Jab1/Cops5. Frontiers in Oncology 2019; 9: 1170. doi: 10.3389/fonc.2019.01170.

22. Liu G, Yu M, Wu B, et al. Jab1/Cops5 contributes to chemoresistance in breast cancer by regulating Rad51. Cellular Signalling 2019; 53: 39–48. doi: 10.1016/j.cellsig.2018.09.010.

23. Yuan C, Wang D, Liu G, et al. Jab1/Cops5: A promising target for cancer diagnosis and therapy. International Journal of Clinical Oncology 2021; 26(7): 1159–1169. doi: 10.1007/s10147-021-01933-9.

24. Guo Z, Wang Y, Zhao Y, et al. The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer. Gene 2019; 687: 219–227. doi: 10.1016/j.gene.2018.11.061.

25. Pandey P, Khan F, Alzahrani FA, et al. A novel approach to unraveling the apoptotic potential of rutin (bioflavonoid) via targeting Jab1 in cervical cancer cells. Molecules 2021; 26(18): 5529. doi: 10.3390/molecules26185529.

26. Pandey P, Khan F. Jab1 inhibition by methanolic extract of Moringa oleifera leaves in cervical cancer cells: A potent targeted therapeutic approach. Nutrition and Cancer 2021; 73(11–12): 2411–2419. doi: 10.1080/01635581.2020.1826989.

27. Pandey P, Khan F, Maurya P. Targeting Jab1 using hesperidin (dietary phytocompound) for inducing apoptosis in HeLa cervical cancer cells. Journal of Food Biochemistry 2021; 45(7): e13800. doi: 10.1111/jfbc.13800.

28. Pandey P, Siddiqui MH, Behari A, et al. Jab1-siRNA induces cell growth inhibition and cell cycle arrest in gall bladder cancer cells via targeting Jab1 signalosome. Anticancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents) 2019; 19(16): 2019–2033. doi: 10.2174/1871520619666190725122400.

29. Wu B, Pan Y, Liu G, et al. MRPS30-DT knockdown inhibits breast cancer progression by targeting Jab1/Cops5. Frontiers in Oncology 2019; 9: 1170. doi: 10.3389/fonc.2019.01170.

30. Seeliger D, Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 2010; 24(5): 417–422. doi: 10.1007/s10822-010-9352-6.

31. Liu Y, Grimm M, Dai WT, et al. CB-Dock: A web server for cavity detection-guided protein–ligand blind docking. Acta Pharmacologica Sinica 2020; 41(1): 138–144. doi: 10.1038/s41401-019-0228-6.

32. Schneidman-Duhovny D, Inbar Y, Nussinov R, et al. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research 2005; 33: W363–W367. doi: 10.1093/nar/gki481.

33. Wang L, Zeng X, Yang G, et al. Pan-cancer analyses of Jab1/COPS5 reveal oncogenic role and clinical outcome in human cancer. Heliyon 2022; 8(12): e12553. doi: 10.1016/j.heliyon.2022.e12553.

34. Kamran S, Sinniah A, Abdulghani MA, et al. Therapeutic potential of certain terpenoids as anticancer agents: A scoping review. Cancers 2022; 14(5): 1100. doi: 10.3390/cancers14051100.

35. Oktaviani D, Sukmawati W, Farabi K, et al. Terpenoids from the stem bark of Aglaia elaeagnoidea and their cytotoxic activity against HeLa and DU145 cancer cell lines. Molekul 2022; 17(1): 76–84. doi: 10.20884/1.jm.2022.17.1.5594.

36. Sun XB, Wang SM, Li T, et al. Anticancer activity of linalool terpenoid: Apoptosis induction and cell cycle arrest in prostate cancer cells. Tropical Journal of Pharmaceutical Research 2015; 14(4): 619–625. doi: 10.4314/tjpr.v14i4.9.

37. Cui W, Aouidate A, Wang S, et al. Discovering anticancer drugs via computational methods. Frontiers in Pharmacology 2020; 11: 733. doi: 10.3389/fphar.2020.00733.

38. Prada-Gracia D, Huerta-Yépez S, Moreno-Vargas LM. Application of computational methods for anticancer drug discovery, design, and optimization. Boletín Médico Del Hospital Infantil de México (English Edition) 2016; 73(6): 411–423. doi: 10.1016/j.bmhimx.2016.10.006.

39. Dai SX, Li WX, Han FF, et al. In silico identification of anticancer compounds and plants from traditional Chinese medicine database. Scientific Reports 2016; 6: 25462. doi: 10.1038/srep25462.

40. Vibala BV, Praseetha PK, Vijayakumar S. Evaluating new strategies for anticancer molecules from ethnic medicinal plants through in silico and biological approach—A review. Gene Reports 2020; 18: 100553. doi: 10.1016/j.genrep.2019.100553.

41. Luthra R, Sharma N, Datta S, et al. Evaluation of Phytocompounds of Vitis vinifera, Tabernaemontana corymbosa and Aloe vera against JAB1: A Strategy to Treat Cervical Cancer. Letters in Applied NanoBioScience 2022; 12(3). doi: 10.33263/LIANBS123.066.

42. Jacobson KA. New paradigms in GPCR drug discovery. Biochemical Pharmacology 2015; 98(4): 541–555. doi: 10.1016/j.bcp.2015.08.085.

43. Mirza AZ, Althagafi II, Shamshad H. Role of PPAR receptor in different diseases and their ligands: Physiological importance and clinical implications. European Journal of Medicinal Chemistry 2019; 166: 502–513. doi: 10.1016/j.ejmech.2019.01.067.

44. Scheepstra M, Hekking KF, Hijfte L, et al. Bivalent ligands for protein degradation in drug discovery. Computational and Structural Biotechnology Journal 2019; 17: 160–176. doi: 10.1016/j.csbj.2019.01.006.

45. Nafie MS, Tantawy MA, Elmgeed GA. Screening of different drug design tools to predict the mode of action of steroidal derivatives as anticancer agents. Steroids 2019; 152: 108485. doi: 10.1016/j.steroids.2019.108485.




DOI: https://doi.org/10.24294/ti.v7.i1.2055

Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Pratibha Pandey, Fahad Khan, Kiran Yadav, Kartikey Singh, Akhlakur Rehman, Avijit Mazumder, Minhaj Ahmad Khan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.