Novel approaches for allergen-specific immunotherapy—An overview
Vol 7, Issue 1, 2023
(Abstract)
Abstract
Keywords
Full Text:
PDFReferences
1. Goss FR, Zhou L, Plasek JM, et al. Evaluating standard terminologies for encoding allergy information. Journal of the American Medical Informatics Association 2013; 20(5): 969–979. doi: 10.1136/amiajnl-2012-000816.
2. Larsen JN, Broge L, Jacobi H. Allergy immunotherapy: The future of allergy treatment. Drug Discovery Today 2016; 21(1): 26–37. doi: 10.1016/j.drudis.2015.07.010.
3. Mir MA (editor). The fundamentals of hypersensitivities and allergies. New York: Nova Science Publishers; 2020. p. 248. doi: 10.52305/KFXT3254.
4. Gülsen A, Wedi B, Jappe U. Hypersensitivity reactions to biologics (part II): Classifications and current diagnostic and treatment approaches. Allergo Journal International 2020; 29(5): 139–154. doi: 10.1007/s40629-020-00127-5.
5. Basu S, Banik BK. Autoimmune disease: A major challenge for effective treatment. Immunology: Current Research 2017; 1(1): 103.
6. Yawalkar N. Drug hypersensitivity. Acta Clinica Belgica 2009; 64(6): 529–533. doi: 10.1179/acb.2009.090.
7. Mahdani FY, Parmadiati AE, Ernawati DS, et al. Citrus limon peel essential oil-induced type iv hypersensitivity reaction. Journal of Experimental Pharmacology 2020; 12: 213–220. doi: 10.2147/JEP.S256139.
8. Lin BF, Chiang BL, Ma Y, et al. Traditional herbal medicine and allergic asthma. Evidence-Based Complementary and Alternative Medicine 2015; 2015. doi: 10.1155/2015/510989.
9. Valenta R, Campana R, Focke-Tejkl M, Niederberger V. Vaccine development for allergen-specific immunotherapy based on recombinant allergens and synthetic allergen peptides: Lessons from the past and novel mechanisms of action for the future. Journal of Allergy and Clinical Immunology 2016; 137(2): 351–357. doi: 10.1016/j.jaci.2015.12.1299.
10. Fujita H, Soyka MB, Akdis M, Akdis CA. Mechanisms of allergen-specific immunotherapy. Clinical and Translational Allergy 2012; 2: 2. doi: 10.1186/2045-7022-2-2.
11. Senti G, Kündig TM. Novel delivery routes for allergy immunotherapy: Intralymphatic, epicutaneous, and intradermal. Immunology and Allergy Clinics 2016; 36(1): 25–37. doi: 10.1016/j.iac.2015.08.006.
12. Freiberger SN, Zehnder M, Gafvelin G, et al. IgG4 but no IgG1 antibody production after intralymphatic immunotherapy with recombinant MAT-Feld1 in human. Allergy: European Journal of Allergy and Clinical Immunology 2016; 71(9): 1366–1370. doi: 10.1111/all.12946.
13. Senti G, Crameri R, Kuster D, et al. Intralymphatic immunotherapy for cat allergy induces tolerance after only 3 injections. Journal of Allergy and Clinical Immunology 2012; 129(5): 1290–1296. doi: 10.1016/j.jaci.2012.02.026.
14. Senti G, Freiburghaus AU, Larenas-Linnemann D, et al. Intralymphatic immunotherapy: Update and unmet needs. International Archives of Allergy and Immunology 2019; 178(2): 141–149. doi: 10.1159/000493647.
15. Kim ST, Park SH, Lee SM, Lee SP. Allergen-specific intralymphatic immunotherapy in human and animal studies. Asia Pacific Allergy 2017; 7(3): 131–137. doi: 10.5415/apallergy.2017.7.3.131.
16. Dhami S, Nurmatov U, Arasi S, et al. Allergen immunotherapy for allergic rhinoconjunctivitis: A systematic review and meta-analysis. Allergy: European Journal of Allergy and Clinical Immunology 2017; 72(11): 1597–1631. doi: 10.1111/all.13201.
17. Durham SR, Creticos PS, Nelson HS, et al. Treatment effect of sublingual immunotherapy tablets and pharmacotherapies for seasonal and perennial allergic rhinitis: Pooled analyses. Journal of Allergy and Clinical Immunology 2016; 138(4): 1081–1088.e4. doi: 10.1016/j.jaci.2016.04.061.
18. Trivedi A, Katelaris C. Presentation, diagnosis, and the role of subcutaneous and sublingual immunotherapy in the management of ocular allergy. Clinical and Experimental Optometry 2021; 104(3): 334–349. doi: 10.1111/cxo.13129.
19. Nolte H, Bernstein DI, Nelson HS, et al. Efficacy of house dust mite sublingual immunotherapy tablet in North American adolescents and adults in a randomized, placebo-controlled trial. Journal of Allergy and Clinical Immunology 2016; 138(6): 1631–1638. doi: 10.1016/j.jaci.2016.06.044.
20. Bernstein DI, Bardelas JA, Svanholm Fogh B, et al. A practical guide to the sublingual immunotherapy tablet adverse event profile: Implications for clinical practice. Postgraduate Medicine 2017; 129(6): 590–597. doi: 10.1080/00325481.2017.1302306.
21. Tsabouri S, Mavroudi A, Feketea G, Guibas GV. Subcutaneous and sublingual immunotherapy in allergic asthma in children. Frontiers in Pediatrics 2017; 5: 82. doi: 10.3389/fped.2017.00082.
22. Jutel M, Agache I, Bonini S, et al. International consensus on allergen immunotherapy II: Mechanisms, standardization, and pharmacoeconomics. Journal of Allergy and Clinical Immunology 2016; 137(2): 358–368. doi: 10.1016/j.jaci.2015.12.1300.
23. Wise SK, Lin SY, Toskala E, et al. International consensus statement on allergy and rhinology: Allergic rhinitis. International Forum of Allergy & Rhinology 2018; 8(2): 108–352. doi: 10.1002/alr.22073.
24. Sánchez-Borges M, Bernstein DI, Calabria C. Subcutaneous immunotherapy safety: Incidence per surveys and risk factors. Immunology and Allergy Clinics 2020; 40(1): 25–39. doi: 10.1016/j.iac.2019.09.001.
25. Pajno GB, Fernandez-Rivas M, Arasi S, et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy: European Journal of Allergy and Clinical Immunology 2018; 73(4): 799–815. doi: 10.1111/all.13319.
26. Lawrence MG, Steinke JW, Borish L. Basic science for the clinician: Mechanisms of sublingual and subcutaneous immunotherapy. Annals of Allergy, Asthma and Immunology 2016; 117(2): 138–142. doi: 10.1016/j.anai.2016.06.027.
27. Dorofeeva Y, Shilovskiy I, Tulaeva I, et al. Past, present, and future of allergen immunotherapy vaccines. Allergy: European Journal of Allergy and Clinical Immunology 2021; 76(1): 131–149. doi: 10.1111/all.14300.
28. Kim EH, Burks AW. Food allergy immunotherapy: Oral immunotherapy and epicutaneous immunotherapy. Allergy: European Journal of Allergy and Clinical Immunology 2020; 75(6): 1337–1346. doi: 10.1111/all.14220.
29. Eiwegger T, Anagnostou K, Arasi S, et al. Conflicting verdicts on peanut oral immunotherapy from the Institute for Clinical and Economic Review and US Food and Drug Administration Advisory Committee: Where do we go from here? Journal of Allergy and Clinical Immunology 2020; 145(4): 1153–1156. doi: 10.1016/j.jaci.2019.10.021.
30. Chu DK, Wood RA, French S, et al. Oral immunotherapy for peanut allergy (PACE): A systematic review and meta-analysis of efficacy and safety. The Lancet 2019; 393(10187): 2222–2232. doi: 10.1016/S0140-6736(19)30420-9.
31. Ratemi E, Sultana Shaik A, Al Faraj A, Halwani R. Alternative approaches for the treatment of airway diseases: Focus on nanoparticle medicine. Clinical and Experimental Allergy 2016; 46(8): 1033–1042. doi: 10.1111/cea.12771.
32. Flemming A. Autoimmunity: Nanoparticles engineered for antigen-specific immunotherapy. Nature Reviews Immunology 2016; 15(4): 233. doi: 10.1038/nri.2016.39.
33. Gamazo C, Gastaminza G, Ferrer M, et al. Nanoparticle based-immunotherapy against allergy. Immunotherapy 2014; 6(7): 885–897. doi: 10.2217/imt.14.63.
34. Alsaleh NB, Brown JM. Engineered nanomaterials and type I allergic hypersensitivity reactions. Frontiers in Immunology 2020; 11: 222. doi: 10.3389/fimmu.2020.00222.
35. Di Felice G, Colombo P. Nanoparticle-allergen complexes for allergen immunotherapy. International Journal of Nanomedicine 2017; 12: 4493–4504. doi: 10.2147/IJN.S134630.
36. Paris JL, de la Torre P, Flores AI. New therapeutic approaches for allergy: A review of cell therapy and bio- or nano-material-based strategies. Pharmaceutics 2021; 13(12): 2149. doi: 10.3390/pharmaceutics13122149.
37. Pohlit H, Frey H, Saloga J. Could allergen-specific immunotherapy benefit from the use of nanocarriers? Nanomedicine 2016; 11(11): 1329–1331. doi: 10.2217/nnm-2016-0111.
38. Dacoba TG, Olivera A, Torres D, et al. Modulating the immune system through nanotechnology. Seminars in Immunology 2017; 34: 78–102. doi: 10.1016/j.smim.2017.09.007.
39. Han FY, Thurecht KJ, Whittaker AK, Smith MT. Bioerodable PLGA-based microparticles for producing sustained-release drug formulations and strategies for improving drug loading. Frontiers in Pharmacology 2016; 7: 185. doi: 10.3389/fphar.2016.00185.
40. Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Design, Development and Therapy 2016; 10: 483–507. doi: 10.2147/DDDT.S99651.
41. Landriscina A, Rosen J, Friedman AJ. Biodegradable chitosan nanoparticles in drug delivery for infectious disease. Nanomedicine 2015; 10(10): 1609–1619. doi: 10.2217/nnm.15.7.
42. Ruseska I, Fresacher K, Petschacher C, Zimmer A. Use of protamine in nanopharmaceuticals—A review. Nanomaterials 2021; 11(6): 1508. doi: 10.3390/nano11061508.
43. Scheiblhofer S, Machado Y, Feinle A, et al. Potential of nanoparticles for allergen-specific immunotherapy–Use of silica nanoparticles as vaccination platform. Expert Opinion on Drug Delivery 2016; 13(12): 1777–1788. doi: 10.1080/17425247.2016.1203898.
44. Bernasconi V, Norling K, Bally M, et al. Mucosal vaccine development based on liposome technology. Journal of Immunology Research 2016; 2016: 5482087. doi: 10.1155/2016/5482087.
45. Kratzer B, Hofer S, Zabel M, et al. All the small things: How virus-like particles and liposomes modulate allergic immune responses. European Journal of Immunology 2020; 50(1): 17–32. doi: 10.1002/eji.201847810.
46. Linhart B, Valenta R. Vaccines for allergy. Current Opinion in Immunology 2012; 24(3): 354–360. doi: 10.1016/j.coi.2012.03.006.
47. Schmetterer KG, Haiderer D, Leb-Reichl VM, et al. Bet v 1-specific T-cell receptor/forkhead box protein 3 transgenic T cells suppress Bet v 1-specific T-cell effector function in an activation-dependent manner. Journal of Allergy and Clinical Immunology 2011; 127(1): 238–245. doi: 10.1016/j.jaci.2010.10.023.
48. Chen KW, Focke-Tejkl M, Blatt K, et al. Carrier-bound nonallergenic Der p 2 peptides induce IgG antibodies blocking allergen-induced basophil activation in allergic patients. Allergy: European Journal of Allergy and Clinical Immunology 2012; 67(5): 609–621. doi: 10.1111/j.1398-9995.2012.02794.x.
49. Cox L. Allergen immunotherapy: Immunomodulatory treatment for allergic diseases. Expert Review of Clinical Immunology 2006; 2(4): 533–546. doi: 10.1586/1744666X.2.4.533.
50. Zhernov Y, Curin M, Khaitov M, et al. Recombinant allergens for immunotherapy: State of the art. Current Opinion in Allergy and Clinical Immunology 2019; 19(4): 402–414. doi: 10.1097/ACI.0000000000000536.
51. Marth K, Focke-Tejkl M, Lupinek C, et al. Allergen peptides, recombinant allergens and hypoallergens for allergen-specific immunotherapy. Current Treatment Options in Allergy 2014; 1: 91–106. doi: 10.1007/s40521-013-0006-5.
52. Jutel M, Solarewicz-Madejek K, Smolinska S. Recombinant allergens: The present and the future. Human Vaccines & Immunotherapeutics 2012; 8(10): 1534–1543. doi: 10.4161/hv.22064.
53. Curin M, Khaitov M, Karaulov A, et al. Next-generation of allergen-specific immunotherapies: Molecular approaches. Current Allergy and Asthma Reports 2018; 18(7): 39. doi: 10.1007/s11882-018-0790-x.
54. Akinfenwa O, Rodríguez-Domínguez A, Vrtala S, et al. Novel vaccines for allergen-specific immunotherapy. Current Opinion in Allergy and Clinical Immunology 2021; 21(1): 86–99. doi: 10.1097/ACI.0000000000000706.
55. Campana R, Marth K, Zieglmayer P, et al. Vaccination of nonallergic individuals with recombinant hypoallergenic fragments of birch pollen allergen Bet v 1: Safety, effects, and mechanisms. Journal of Allergy and Clinical Immunology 2019; 143(3): 1258–1261. doi: 10.1016/j.jaci.2018.11.011.
56. Larsen JM, Bang-Berthelsen CH, Qvortrup K, et al. Production of allergen-specific immunotherapeutic agents for the treatment of food allergy. Critical Reviews in Biotechnology 2020; 40(6): 881–894. doi: 10.1080/07388551.2020.1772194.
57. Cromwell O, Häfner D, Nandy A. Recombinant allergens for specific immunotherapy. Journal of Allergy and Clinical Immunology 2011; 127(4): 865–872. doi: 10.1016/j.jaci.2011.01.047.
58. Eckl-Dorna J, Weber M, Stanek V, et al. Two years of treatment with the recombinant grass pollen allergy vaccine BM32 induces a continuously increasing allergen-specific IgG4 response. EBioMedicine 2019; 50: 421–432. doi: 10.1016/j.ebiom.2019.11.006.
59. Boonpiyathad T, Lao-Araya M, Chiewchalermsri C, et al. Allergic rhinitis: What do we know about allergen-specific immunotherapy? Frontiers in Allergy 2021; 2: 747323. doi: 10.3389/falgy.2021.747323.
60. Worm M. SPIREs: A new horizon for allergic disease treatment? Expert Review of Clinical Immunology 2015; 11(11): 1173–1175. doi: 10.1586/1744666X.2015.1066673.
61. Cavkaytar O, Akdis CA, Akdis M. Modulation of immune responses by immunotherapy in allergic diseases. Current Opinion in Pharmacology 2014; 17(1): 30–37. Doi: 10.1016/j.coph.2014.07.003.
62. O’Hehir RE, Prickett SR, Rolland JM. T cell epitope peptide therapy for allergic diseases. Current Allergy and Asthma Reports 2016; 16(2): 1–9. doi: 10.1007/s11882-015-0587-0.
63. Creticos PS. Advances in synthetic peptide immuno-regulatory epitopes. World Allergy Organization Journal 2014; 7: 30. doi: 10.1186/1939-4551-7-30.
64. Incorvaia C, Montagni M, Ridolo E. The efficiency of peptide immunotherapy for respiratory allergy. Expert Review of Clinical Pharmacology 2016; 9(6): 831–837. doi: 10.1586/17512433.2016.1157017.
65. Ellis AK, Frankish CW, Armstrong K, et al. Treatment with synthetic peptide immuno-regulatory epitopes derived from grass allergens leads to a substantial reduction in grass allergy symptoms in the environmental exposure unit. Journal of Allergy and Clinical Immunology 2014; 133(2): AB290. doi: 10.1016/j.jaci.2013.12.1024.
66. Prickett SR, Rolland JM, O’Hehir RE. Immunoregulatory T cell epitope peptides: The new frontier in allergy therapy. Clinical and Experimental Allergy 2015; 45(6): 1015–1026. doi: 10.1111/cea.12554.
67. Singer BD, King LS, D’Alessio FR. Regulatory T cells as immunotherapy. Frontiers inImmunology 2014; 5: 46. doi: 10.3389/fimmu.2014.00046.
68. Kitaoka M, Naritomi A, Kawabe Y, et al. Transcutaneous pollinosis immunotherapy using a solid-in-oil nanodispersion system carrying T cell epitope peptide and R848. Bioengineering & Translational Medicine 2017; 2(1): 102–108. doi: 10.1002/btm2.10048.
69. Wraith DC. Adaptive T cell tuning in immune regulation and immunotherapy of autoimmune diseases. Immunology Letters 2022; 244: 12–18. doi: 10.1016/j.imlet.2022.02.007.
70. Simms E, Syed I, Rudulier C, Larché M. Peptide immunotherapy; short but long lasting? Current Treatment Options in Allergy 2015; 2(1): 64–71. doi: 10.1007/s40521-014-0043-8.
71. Calzada D, Cremades-Jimeno L, López-Ramos M, Cárdaba B. Peptide allergen immunotherapy: A new perspective in olive-pollen allergy. Pharmaceutics 2021; 13(7): 1007. doi: 10.3390/pharmaceutics13071007.
72. Shepard ER, Wegner A, Hill EV, et al. The mechanism of action of antigen processing independent T cell epitopes designed for immunotherapy of autoimmune diseases. Frontiers in Immunology 2021; 12: 654201. doi: 10.3389/fimmu.2021.654201.
73. Anzaghe M, Schülke S, Scheurer S. Virus-like particles as carrier systems to enhance immunomodulation in allergen immunotherapy. Current Allergy and Asthma Reports 2018; 18: 71. doi: 10.1007/s11882-018-0827-1.
74. Gao Y, Wijewardhana C, Mann JFS. Virus-like particle, liposome, and polymeric particle-based vaccines against HIV-1. Frontiers in Immunology 2018; 9: 345. doi: 10.3389/fimmu.2018.00345.
75. Mohsen MO, Zha L, Cabral-Miranda G, Bachmann MF. Major findings and recent advances in virus-like particle (VLP)-based vaccines. Seminars in Immunology 2017; 34: 123–132. doi: 10.1016/j.smim.2017.08.014.
76. Mohsen MO, Gomes AC, Vogel M, Bachmann MF. Interaction of viral capsid-derived virus-like particles (VLPs) with the innate immune system. Vaccines (Basel) 2018; 6(3): 37. doi: 10.3390/vaccines6030037.
77. Engeroff P, Bachmann MF. The 5th virus-like particle and nano-particle vaccines (VLPNPV) conference. Expert Review of Vaccines 2019; 18(1): 1–3. doi: 10.1080/14760584.2019.1557522.
78. Klimek L, Kündig T, Kramer MF, et al. Virus-like particles (VLP) in prophylaxis and immunotherapy of allergic diseases. Allergo Journal International 2018; 27(8): 245–255. doi: 10.1007/s40629-018-0074-y.
79. Mohsen MO, Augusto G, Bachmann MF. The 3Ds in virus-like particle based-vaccines: “Design, Delivery and Dynamics”. Immunological Reviews 2020; 296(1): 155–168. doi: 10.1111/imr.12863.
80. Gomes AC, Roesti ES, El-Turabi A, Bachmann MF. Type of RNA packed in VLPs impacts IgG class switching—Implications for an influenza vaccine design. Vaccines (Basel) 2019; 7(2): 47. doi: 10.3390/vaccines7020047.
81. Storni F, Zeltins A, Balke I, et al. Vaccine against peanut allergy based on engineered virus-like particles displaying single major peanut allergens. Journal of Allergy and Clinical Immunology 2020; 145(4): 1240–1253.e3. doi: 10.1016/j.jaci.2019.12.007.
82. Schwarz B, Douglas T. Development of virus-like particles for diagnostic and prophylactic biomedical applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2015; 7(5): 722–735. doi: 10.1002/wnan.1336.
83. Engeroff P, Caviezel F, Storni F, et al. Allergens displayed on virus-like particles are highly immunogenic but fail to activate human mast cells. Allergy: European Journal of Allergy and Clinical Immunology 2018; 73(2): 341–349. doi: 10.1111/all.13268.
84. Pazos-Castro D, Margain C, Gonzalez-Klein Z, et al. Suitability of potyviral recombinant virus-like particles bearing a complete food allergen for immunotherapy vaccines. Frontiers in Immunology 2022; 13: 986823. doi: 10.3389/fimmu.2022.986823.
85. Pechsrichuang P, Namwongnao S, Jacquet A. Bioengineering of virus-like particles for the prevention or treatment of allergic diseases. Allergy, Asthma & Immunology Research 2021; 13(1): 23–41. doi: 10.4168/aair.2021.13.1.23.
86. Pavón-Romero GF, Parra-Vargas MI, Ramírez-Jiménez F, et al. Allergen immunotherapy: Current and future trends. Cells 2022; 11(2): 212. doi: 10.3390/cells11020212.
87. Vinay TN, Park CS, Kim HY, Jung SJ. Toxicity and dose determination of quillaja saponin, aluminum hydroxide and squalene in olive flounder (Paralichthys olivaceus). Veterinary Immunology and Immunopathology 2014; 158(1–2): 73–85. doi: 10.1016/j.vetimm.2013.03.007.
88. Pechsrichuang P, Jacquet A. Molecular approaches to allergen-specific immunotherapy: Are we so far from clinical implementation? Clinical and Experimental Allergy 2020; 50(5): 543–557. doi: 10.1111/cea.13588.
89. Johnson L, Duschl A, Himly M. Nanotechnology-based vaccines for allergen-specific immunotherapy: Potentials and challenges of conventional and novel adjuvants under research. Vaccines (Basel) 2020; 8(2): 237. doi: 10.3390/vaccines8020237.
90. Shardlow E, Mold M, Exley C. Unraveling the enigma: Elucidating the relationship between the physicochemical properties of aluminium-based adjuvants and their immunological mechanisms of action. Allergy, Asthma and Clinical Immunology 2018; 14(1): 80. doi: 10.1186/s13223-018-0305-2.
91. Kirtland ME, Tsitoura DC, Durham SR, Shamji MH. Toll-like receptor agonists as adjuvants for allergen immunotherapy. Frontiers in Immunology 2020; 11: 599083. doi: 10.3389/fimmu.2020.599083.
92. Jensen-Jarolim E. Aluminium in allergies and allergen immunotherapy. World Allergy Organization Journal 2015; 8(1): 7. doi: 10.1186/s40413-015-0060-5.
93. Jensen-Jarolim E, Bachmann MF, Bonini S, et al. State-of-the-art in marketed adjuvants and formulations in allergen immunotherapy: A position paper of the European Academy of Allergy and Clinical Immunology (EAACI). Allergy: European Journal of Allergy and Clinical Immunology 2020; 75(4): 746–760. doi: 10.1111/all.14134.
94. Masson JD, Thibaudon M, Bélec L, Crépeaux G. Calcium phosphate: A substitute for aluminum adjuvants? Expert Review of Vaccines 2017; 16(3): 289–299. doi: 10.1080/14760584.2017.1244484.
95. Heath MD, Mohsen MO, De Kam PJ, et al. Shaping modern vaccines: Adjuvant systems using MicroCrystalline Tyrosine (MCT®). Frontiers in Immunology 2020; 11: 594911. doi: 10.3389/fimmu.2020.594911.
96. Montamat G, Leonard C, Poli A, et al. CpG adjuvant in allergen-specific immunotherapy: Finding the sweet spot for the induction of immune tolerance. Frontiers in Immunology 2021; 12: 590054. doi: 10.3389/fimmu.2021.590054.
97. Manangeeswaran M, Lewkowicz AP, Israely T, et al. CpG oligonucleotides protect mice from alphavirus encephalitis: Role of NK cells, interferons, and TNF. Frontiers in Immunology 2020; 11: 237. doi: 10.3389/fimmu.2020.00237.
98. Linton S, Burrows AG, Hossenbaccus L, Ellis AK. Future of allergic rhinitis management. Annals of Allergy, Asthma and Immunology 2021; 127(2): 183–190. doi: 10.1016/j.anai.2021.04.029.
99. Carpio-Escalona LV, González-de-Olano D. Use of the Internet by patients attending allergy clinics and its potential as a tool that better meets patients’ needs. The Journal of Allergy and Clinical Immunology: In Practice 2018; 6(3): 1064–1066. doi: 10.1016/j.jaip.2017.10.034.
100. Phadke NA, Wolfson AR, Mancini C, et al. Electronic consultations in allergy/immunology. The Journal of Allergy and Clinical Immunology: In Practice 2019; 7(8): 2594–2602. doi: 10.1016/j.jaip.2019.05.039.
101. Bajowala SS, Shih J, Varshney P, Elliott T. The future of telehealth for allergic disease. The Journal of Allergy and Clinical Immunology: In Practice 2022; 10(10): 2514–2523. doi: 10.1016/j.jaip.2022.08.022.
102. Portnoy JM, Pandya A, Waller M, Elliott T. Telemedicine and emerging technologies for health care in allergy/immunology. Journal of Allergy and Clinical Immunology 2020; 145(2): 445–454. doi: 10.1016/j.jaci.2019.12.903.
103. Portnoy J, Waller M, Elliott T. Telemedicine in the era of COVID-19. The Journal of Allergy and Clinical Immunology: In Practice 2020; 8(5): 1489–1491. doi: 10.1016/j.jaip.2020.03.008.
104. Cruz-Correia R, Ferreira D, Bacelar G, et al. Personalised medicine challenges: Quality of data. International Journal of Data Science and Analytics 2018; 6(3): 251–259. doi: 10.1007/s41060-018-0127-9.
105. The Lancet Respiratory Medicine. Personalised medicine for asthma in a post-pandemic world. The Lancet. Respiratory Medicine 2021; 9(1): 1. doi: 10.1016/S2213-2600(20)30582-8.
106. Brunmair J, Bileck A, Stimpfl T, et al. Metabo-tip: A metabolomics platform for lifestyle monitoring supporting the development of novel strategies in predictive, preventive and personalised medicine. EPMA Journal 2021; 12(2): 141–153. doi: 10.1007/s13167-021-00241-6.
107. Čelakovská J, Bukač J, Vaňková R, et al. Sensitisation to molecular components in patients with atopic dermatitis, relation to asthma bronchiale and allergic rhinitis. Food and Agricultural Immunology 2020; 31(1): 600–629. doi: 10.1080/09540105.2020.1747406.
108. Hesse L, Oude Elberink JNG, van Oosterhout AJM, Nawijn MC. Allergen immunotherapy for allergic airway diseases: Use lessons from the past to design a brighter future. Pharmacology & Therapeutics 2022; 237: 108115. doi: 10.1016/j.pharmthera.2022.108115.
DOI: https://doi.org/10.24294/ti.v7.i1.2026
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Sakshi, Rupa Mazumder, Monika, Neha Singh, Bimlesh Kumar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.