Treating tumors with immune checkpoint inhibitors: Rationale and limitations
Vol 1, Issue 1, 2017
VIEWS - 2906 (Abstract) 1545 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Chan DV, Gibson HM, Aufiero BM, et al. Differential CTLA-4 expression in human CD4+ versus CD8+ T cells is associated with increased NFAT1 and inhibition of CD4+ proliferation. Genes Immun 2014; 15(1): 25–32. doi: 10.1038/gene.2013.57.
2. Leung HT, Bradshaw J, Cleaveland JS, et al. Cytotoxic T lymphocyte-associated molecule-4, a high avidity receptor for CD80 and CD86, contains an intracellular localization motif in its cytoplasmic tail. J Biol Chem 1995; 270(42): 25107–25114. doi: 10.1074/jbc.270.42.25107.
3. Walker LS, Sansom DM. Confusing signals: Recent progress in CTLA-4 biology. Trends Immunol 2015; 36(2): 63–70. doi: 10.1016/j.it.2014.12.001.
4. Pena-Cruz V, McDonough SM, Diaz-Griffero F, et al. PD-1 on immature and PD-1 ligands on migratory human Langerhans cells regulate antigen-presenting cell activity. J Invest Dermatol 2010; 130(9): 2222–2230. doi: 10.1038/jid.2010.127.
5. Thibult ML, Mamessier E, Gertner-Dardenne J, et al. PD-1 is a novel regulator of human B-cell activation. Int Immunol 2013; 25(2): 129–137. doi: 10.1093/intimm/dxs098.
6. Lim TS, Chew V, Sieow JL, et al. PD-1 expression on dendritic cells suppresses CD8+ T cell function and antitumor immunity. Oncoimmunology 2016; 5(3): e1085146. doi: 10.1080/2162402X.2015.1085146.
7. Rodrigues CP, Ferreira AC, Pinho MP, et al. Tolerogenic IDO+ dendritic cells are induced by PD-1-expressing mast cells. Front Immunol 2016; 7: 9. doi: 10.3389/fimmu.2016.00009.
8. Liang SC, Latchman YE, Buhlmann JE, et al. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur J Immunol 2003; 33(10): 2706–2716. doi: 10.1002/eji.200324228.
9. Kinter AL, Godbout EJ, McNally JP, et al. The common γ-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 2008; 181(10): 6738–6746. doi: 10.4049/jimmunol.181.10.6738.
10. Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms. Mol Cell Biol 2005; 25(21): 9543–9553. doi: 10.1128/MCB.25.21.9543-9553.2005.
11. Patsoukis N, Brown J, Petkova V, et al. Selective effects of PD-1 on Akt and Ras pathways regulate molecular components of the cell cycle and inhibit T cell proliferation. Sci Signal 2012; 5(230): ra46. doi: 10.1126/scisignal.2002796.
12. Fife BT, Bluestone JA. Control of peripheral T-cell tolerance and autoimmunity via the CTLA-4 and PD-1 pathways. Immunol Rev 2008; 224: 166–182. doi: 10.1111/j.1600-065X.2008.00662.x.
13. Latchman Y, Wood CR, Chernova T, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2001; 2(3): 261–268. doi: 10.1038/85330.
14. Freeman GJ, Wherry EJ, Ahmed R, et al. Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006; 203(10): 2223–2227. doi: 10.1084/jem.20061800.
15. Brown JA, Dorfman DM, Ma F-R, et al. Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. Journal Immunol 2003; 170(3): 1257–1266. doi: 10.4049/jimmunol.170.3.1257.
16. Waterhouse P, Penninger JM, Timms E, et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 1995; 270(5238): 985. doi: 10.1126/science.270.5238.985.
17. Wing K, Onishi Y, Prieto-Martin P, et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 2008; 322(5899): 271–275. doi: 10.1126/science.1160062.
18. Nishimura H, Minato N, Nakano T, et al. Immunological studies on PD-1 deficient mice: Implication of PD-1 as a negative regulator for B cell responses. Int Immunol 1998; 10(10): 1563–1572. doi: 10.1093/intimm/10.10.1563.
19. Nishimura H, Nose M, Hiai H, et al. Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 1999; 11(2): 141–151. doi: 10.1016/S1074-7613(00)80089-8.
20. Gough SC, Walker LS, Sansom DM. CTLA4 gene polymorphism and autoimmunity. Immunol Rev 2005; 204: 102–115. doi: 10.1111/j.0105-2896.2005.00249.x.
21. Nielsen C, Hansen D, Husby S, et al. Association of a putative regulatory polymorphism in the PD-1 gene with susceptibility to type 1 diabetes. Tissue Antigens 2003; 62(6): 492–497. doi: 10.1046/j.1399-0039.2003.00136.x.
22. Velazquez-Cruz R, Orozco L, Espinosa-Rosales F, et al. Association of PDCD1 polymorphisms with childhood-onset systemic lupus erythematosus. Eur J Hum Genet 2007; 15(3): 336–341. doi: 10.1038/sj.ejhg.5201767.
23. Kulpa DA, Lawani M, Cooper A, et al. PD-1 coinhibitory signals: The link between pathogenesis and protection. Semin Immunol 2013; 25(3): 219–227. doi: 10.1016/j.smim.2013.02.002.
24. McMahan RH, Slansky JE. Mobilizing the low-avidity T cell repertoire to kill tumors. Semin Cancer Biol 2007; 17(4): 317–329. doi: 10.1016/j.semcancer.2007.06.006.
25. Honda Y, Otsuka A, Ono S, et al. Infiltration of PD-1-positive cells in combination with tumor site PD-L1 expression is a positive prognostic factor in cutaneous angiosarcoma. Oncoimmunology 2017; 6(1): e1253657. doi: 10.1080/2162402X.2016.1253657.
26. Chen J, Feng Y, Lu L, et al. Interferon-γ-induced PD-L1 surface expression on human oral squamous carcinoma via PKD2 signal pathway. Immunobiology 2012; 217(4): 385–393. doi: 10.1016/j.imbio.2011.10.016.
27. Nghiem PT, Bhatia S, Lipson EJ, et al. PD-1 Blockade with pembrolizumab in advanced merkel-cell carcinoma. N Engl J Med 2016; 374(26): 2542–2552. doi: 10.1056/NEJMoa1603702.
28. Liu C, Workman CJ, Vignali DA. Targeting regulatory T cells in tumors. FEBS J 2016; 283(14): 2731–2748. doi: 10.1111/febs.13656.
29. Speiser DE, Utzschneider DT, Oberle SG, et al. T cell differentiation in chronic infection and cancer: Functional adaptation or exhaustion? Nat Rev Immunol 2014; 14(11): 768–774. doi: 10.1038/nri3740.
30. Ahmadzadeh M, Johnson LA, Heemskerk B, et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 2009; 114(8): 1537–1544. doi: 10.1182/blood-2008-12-195792.
31. Baitsch L, Baumgaertner P, Devevre E, et al. Exhaustion of tumor-specific CD8+ T cells in metastases from melanoma patients. J Clin Invest 2011; 121(6): 2350–2360. doi: 10.1172/JCI46102.
32. Chapon M, Randriamampita C, Maubec E, et al. Progressive upregulation of PD-1 in primary and metastatic melanomas associated with blunted TCR signaling in infiltrating T lymphocytes. J Invest Dermatol 2011; 131(6): 1300–1307. doi: 10.1038/jid.2011.30.
33. Curran MA, Montalvo W, Yagita H, et al. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci USA 2010; 107(9): 4275–4280. doi: 10.1073/pnas.0915174107.
34. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science 1996; 271(5256): 1734. doi: 10.1126/science.271.5256.1734.
35. Hodi FS, Mihm MC, Soiffer RJ, et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci USA 2003; 100(8): 4712–4717. doi: 10.1073/pnas.0830997100.
36. Phan GQ, Yang JC, Sherry RM, et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci USA 2003; 100(14): 8372–8377. doi: 10.1073/pnas.1533209100.
37. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015; 373(1): 23–34. doi: 10.1056/NEJMoa1504030.
38. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015; 372(26): 2521–2532. doi: 10.1056/NEJMoa1503093.
39. Abdel-Rahman O, Fouad M. A network meta-analysis of the risk of immune-related renal toxicity in cancer patients treated with immune checkpoint inhibitors. Immunotherapy 2016; 8(5): 665–674. doi: 10.2217/imt-2015-0020.
40. Chae YK, Chiec L, Mohindra N, et al. A case of pembrolizumab-induced type-1 diabetes mellitus and discussion of immune checkpoint inhibitor-induced type 1 diabetes. Cancer Immunol Immunother 2017; 66(1): 25–32. doi: 10.1007/s00262-016-1913-7.
41. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711–723. doi: 10.1056/NEJMoa1003466.
42. Kato Y, Otsuka A, Miyachi Y, et al. Exacerbation of psoriasis vulgaris during nivolumab for oral mucosal melanoma. J Eur Acad Dermatol Venereol 2016; 30(10): e89–e91. doi: 10.1111/jdv.13336.
43. Nonomura Y, Otsuka A, Ohtsuka M, et al. ADAMTSL5 is upregulated in melanoma tissues in patients with idiopathic psoriasis vulgaris induced by nivolumab. J Eur Acad Dermatol Venereol 2016; 31: e100–e101. doi: 10.1111/jdv.13818.
44. Horvat TZ, Adel NG, Dang TO, et al. Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with ipilimumab at Memorial Sloan Kettering Cancer Center. J Clin Oncol 2015; 33(28): 3193–3198. doi: 10.1200/JCO.2015.60.8448.
45. Della Vittoria Scarpati G, Fusciello C, Perri F, et al. Ipilimumab in the treatment of metastatic melanoma: Management of adverse events. Onco Targets Ther 2014; 7(1): 203–209. doi: 10.2147/OTT.S57335.
46. Johnston RL, Lutzky J, Chodhry A, et al. Cytotoxic T-lymphocyte-associated antigen 4 antibody-induced colitis and its management with infliximab. Dig Dis Sci 2009; 54(11): 2538–2540. doi: 10.1007/s10620-008-0641-z.
47. Freeman-Keller M, Kim Y, Cronin H, et al. Nivolumab in resected and unresectable metastatic melanoma: Characteristics of immune-related adverse events and association with outcomes. Clin Cancer Res 2016; 22(4): 886–894. doi: 10.1158/1078-0432.CCR-15-1136.
48. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454. doi: 10.1056/NEJMoa1200690.
49. Herbst RS, Soria JC, Kowanetz M, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515(7528): 563–567. doi: 10.1038/nature14011.
50. Ferris RL, Blumenschein G Jr, Fayette J, et al. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856–1867. doi: 10.1056/NEJMoa1602252.
51. Brahmer J, Reckamp KL, Baas P, et al. Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer. N Engl J Med 2015; 373(2): 123–135. doi: 10.1056/NEJMoa1504627.
52. Nonomura Y, Otsuka A, Nakashima C, et al. Peripheral blood Th9 cells are a possible pharmacodynamic biomarker of nivolumab treatment efficacy in metastatic melanoma patients. Oncoimmunology 2016; 5(12): e1248327. doi: 10.1080/2162402X.2016.1248327.
53. Lu Y, Hong S, Li H, et al. Th9 cells promote antitumor immune responses in vivo. J Clin Invest 2012; 122(11): 4160–4171. doi: 10.1172/JCI65459.
54. Purwar R, Schlapbach C, Xiao S, et al. Robust tumor immunity to melanoma mediated by interleukin-9-producing T cells. Nat Med 2012; 18(8): 1248–1253. doi: 10.1038/nm.2856.
55. Hoelzinger DB, Dominguez AL, Cohen PA, et al. Inhibition of adaptive immunity by IL9 can be disrupted to achieve rapid T-cell sensitization and rejection of progressive tumor challenges. Cancer Res 2014; 74(23): 6845–6855. doi: 10.1158/0008-5472.CAN-14-0836.
56. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520. doi: 10.1056/NEJMoa1500596.
57. Rizvi NA, Hellmann MD, Snyder A, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 2015; 348(6230): 124–128. doi: 10.1126/science.aaa1348.
58. Snyder A, Makarov V, Merghoub T, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med 2014; 371(23): 2189–2199. doi: 10.1056/NEJMoa1406498.
59. Vetizou M, Pitt JM, Daillere R, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015; 350(6264): 1079–1084. doi: 10.1126/science.aad1329.
60. Zaretsky JM, Garcia-Diaz A, Shin DS, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016; 375(9): 819–829. doi: 10.1056/NEJMoa1604958.
61. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory receptors with specialized functions in immune regulation. Immunity 2016; 44(5): 989–1004. doi: 10.1016/j.immuni.2016.05.001.
62. Leger-Ravet M-B, Mathiot C, Portier A, et al. Increased expression of perforin and granzyme B genes in patients with metastatic melanoma treated with recombinant interleukin-2. Cancer Immunol Immunother 1994; 39(1): 53–58. doi: 10.1007/BF01517181.
63. Atkins MB, Lotze MT, Dutcher JP, et al. High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: Analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1999; 17(7): 2105–2116. doi: 10.1200/JCO.1999.17.7.2105.
64. Sim GC, Martin-Orozco N, Jin L, et al. IL-2 therapy promotes suppressive ICOS+ Treg expansion in melanoma patients. J Clin Invest 2014; 124(1): 99–110. doi: 10.1172/JCI46266.
65. Kodumudi KN, Siegel J, Weber AM, et al. Immune checkpoint blockade to improve tumor infiltrating lymphocytes for adoptive cell therapy. PLoS One 2016; 11(4): e0153053. doi: 10.1371/journal.pone.0153053.
66. Sivan A, Corrales L, Hubert N, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 2015; 350(6264): 1084–1089. doi: 10.1126/science.aac4255.
DOI: https://doi.org/10.24294/ti.v1.i1.20
Refbacks
- There are currently no refbacks.
Copyright (c) 2017 Judith Anna Seidel
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.