Complement system as the potential therapeutic target in the management of COVID-19 patients

Gilda Parsamanesh, Pooya Farhangnia, Milad Karimi, Amirhossein Khosrozadeh Ghomi, Shiva Dehrouyeh, Azin Aghamajidi

Article ID: 1834
Vol 6, Issue 2, 2022

VIEWS - 759 (Abstract) 238 (PDF)

Abstract


The emerging COVID-19 caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been raised as a global health challenge. Despite the breakthrough in the development of the COVID-19 vaccine, it still continues as a serious crisis, worldwide. The aberrant immune responses are strongly associated with the severity of the disease and an increased rate of morbidity and mortality among COVID-19 patients. The complement cascade activation is mediated by classical, lectin, and alternative pathways which could induce an inflammatory state during the COVID-19 infection. The growing body of research suggests that complement system activation plays an important role in the immunopathogenesis of SARS-CoV-2. Therefore, the blockade of complement cascades may be an effective approach to prevent the multi-organ complications of COVID-19. In this review, we will highlight the role of the complement system in the immunopathology of COVID-19, emphasizing the potential therapeutical targets to ameliorate COVID-19 infection.


Keywords


SARS-CoV-2; Immune Response; Complement System; Inflammation; Vaccine

Full Text:

PDF


References


1. Hu B, Guo H, Zhou P, Shi Z. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology 2021; 19(3): 141–154. doi: 10.1038/s41579-020-00459-7.

2. Christian MD, Poutanen SM, Loutfy MR, et al. Severe acute respiratory syndrome. Clinical Infectious Diseases 2004; 38(10): 1420–1427. doi: 10.1086/420743.

3. Bleibtreu A, Bertine M, Bertin C, et al. Focus on Middle East respiratory syndrome coronavirus (MERS-CoV). Médecine et Maladies Infectieuses 2020; 50(3): 243–251. doi: 10.1016/j.medmal.2019.10.004.

4. Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423. doi: 10.7759/cureus.7423.

5. Mousavizadeh L, Ghasemi S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. Journal of Microbiology, Immunology and Infection 2021; 54(2): 159–163. doi: 10.1016/j.jmii.2020.03.022.

6. Zhang H, Penninger JM, Li Y, et al. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: Molecular mechanisms and potential therapeutic target. Intensive Care Medicine 2020; 46(4): 586–590. doi: 10.1007/s00134-020-05985-9.

7. Bourgonje AR, Abdulle AE, Timens W, et al. Angiotensin-converting enzyme 2 (ACE2), SARS-CoV-2 and the pathophysiology of coronavirus disease 2019 (COVID-19). The Journal of Pathology 2020; 251(3): 228–248. doi: 10.1002/path.5471.

8. Li MY, Li L, Zhang Y, Wang X. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infectious Diseases of Poverty 2020; 9(1): 45. doi: 10.1186/s40249-020-00662-x.

9. Lukiw WJ, Pogue A, Hill JM. SARS-CoV-2 infectivity and neurological targets in the Brain. Cellular and Molecular Neurobiology 2022; 42(1): 217–224. doi: 10.1007/s10571-020-00947-7.

10. Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduction and Targeted Therapy 2020; 5(1): 283. doi: 10.1038/s41392-020-00426-x.

11. Pourani MR, Abdollahimajd F. CD147 as a novel receptor in the pathogenesis of SARS-CoV-2: Is there any correlation with the risk of COVID-19 in dermatological diseases? Dermatologic Therapy 2020; 33(6): e14443. doi: 10.1111/dth.14443.

12. Xia S, Lan Q, Su S, et al. The role of furin cleavage site in SARS-CoV-2 spike protein-mediated membrane fusion in the presence or absence of trypsin. Signal Transduction and Targeted Therapy 2020; 5(1): 92. doi: 10.1038/s41392-020-0184-0.

13. Mollica V, Rizzo A, Massari F. The pivotal role of TMPRSS2 in coronavirus disease 2019 and prostate cancer. Future Oncology 2020; 16(27): 2029–2033. doi: 10.2217/fon-2020-0571.

14. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. The Lancet 2020; 395(10234): 1417–1418. doi: 10.1016/S0140-6736(20)30937-5.

15. Gupta A, Madhavan MV, Sehgal K, et al. Extrapulmonary manifestations of COVID-19. Nature Medicine 2020; 26(7): 1017–1032. doi: 10.1038/s41591-020-0968-3.

16. Zhu N, Wang W, Liu Z, et al. Morphogenesis and cytopathic effect of SARS-CoV-2 infection in human airway epithelial cells. Nature Communications 2020; 11(1): 3910. doi: 10.1038/s41467-020-17796-z.

17. García LF. Immune response, inflammation, and the clinical spectrum of COVID-19. Frontiers in Immunology 2020; 11: 1441. doi: 10.3389/fimmu.2020.01441.

18. Costela-Ruiz VJ, Illescas-Montes R, Puerta-Puerta JM, et al. SARS-CoV-2 infection: The role of cytokines in COVID-19 disease. Cytokine & Growth Factor Reviews 2020; 54: 62–75. doi: 10.1016/j.cytogfr.2020.06.001.

19. Song P, Li W, Xie J, et al. Cytokine storm induced by SARS-CoV-2. Clinica Chimica Acta 2020; 509: 280–287. doi: 10.1016/j.cca.2020.06.017.

20. Perico L, Benigni A, Casiraghi F, et al. Immunity, endothelial injury and complement-induced coagulopathy in COVID-19. Nature Reviews Nephrology 2021; 17(1): 46–64. doi: 10.1038/s41581-020-00357-4.

21. Dunkelberger JR, Song WC. Complement and its role in innate and adaptive immune responses. Cell Research 2010; 20(1): 34–50. doi: 10.1038/cr.2009.139.

22. Risitano AM, Mastellos DC, Huber-Lang M, et al. Complement as a target in COVID-19? Nature Reviews Immunology 2020; 20(6): 343–344. doi: 10.1038/s41577-020-0320-7.

23. Gralinski LE, Sheahan TP, Morrison TE, et al. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio 2018; 9(5): 01753-18. doi: 10.1128/mBio.01753-18.

24. Wang XM, Mannan R, Xiao L, et al. Characterization of SARS-CoV-2 and host entry factors distribution in a COVID-19 autopsy series. Communications Medicine 2021; 1(1): 24. doi: 10.1038/s43856-021-00025-z.

25. Trypsteen W, Van Cleemput J, Snippenberg WV, et al. On the whereabouts of SARS-CoV-2 in the human body: A systematic review. PLOS Pathogens 2020; 16(10): e1009037. doi: 10.1371/journal.ppat.1009037.

26. Mustafa MI, Abdelmoneim AH, Mahmoud EM, Makhawi AM. Cytokine storm in COVID-19 patients, its impact on organs and potential treatment by QTY code-designed detergent-free chemokine receptors. Mediators of Inflammation 2020; 2020: 8198963. doi: 10.1155/2020/8198963.

27. Lin CP, Huang MJ, Chang IY, et al. Retinoic acid syndrome induced by arsenic trioxide in treating recurrent all-trans retinoic acid resistant acute promyelocytic leukemia. Leukemia & Lymphoma 2000; 38(1–2): 195–198. doi: 10.3109/10428190009060334.

28. Tay MZ, Poh CM, Rénia L, et al. The trinity of COVID-19: Immunity, inflammation and intervention. Nature Reviews Immunology 2020; 20(6): 363–374. doi: 10.1038/s41577-020-0311-8.

29. Rajaei S, Dabbagh A. The immunologic basis of COVID-19: A clinical approach. Journal of Cellular & Molecular Anesthesia 2020; 5(1): 37–42. doi: 10.22037/jcma.v5i1.29778.

30. Tian S, Hu W, Niu L, et al. Pulmonary pathology of early-phase 2019 novel coronavirus (COVID-19) pneumonia in two patients with lung cancer. Journal of Thoracic Oncology 2020; 15(5): 700–704. doi: 10.1016/j.jtho.2020.02.010.

31. Ji HL, Zhao R, Matalon S, Matthay MA. Elevated plasmin(ogen) as a common risk factor for COVID-19 susceptibility. Physiological Reviews 2020; 100(3): 1065–1075. doi: 10.1152/physrev.00013.2020.

32. Magro C, Mulvey JJ, Berlin D, et al. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: A report of five cases. Translational Research 2020; 220: 1–13. doi: 10.1016/j.trsl.2020.04.007.

33. Grasselli G, Tonetti T, Protti A, et al. Pathophysiology of COVID-19-associated acute respiratory distress syndrome: A multicentre prospective observational study. The Lancet Respiratory Medicine 2020; 8(12): 1201–1208. doi: 10.1016/s2213-2600(20)30370-2.

34. Bulfamante GP, Perrucci GL, Falleni M, et al. Evidence of SARS-CoV-2 transcriptional activity in cardiomyocytes of COVID-19 patients without clinical signs of cardiac involvement. Biomedicines 2020; 8(12): 626. doi: 10.3390/biomedicines8120626.

35. Nicholls JM, Poon LL, Lee KC, et al. Lung pathology of fatal severe acute respiratory syndrome. The Lancet 2003; 361(9371): 1773–1778. doi: 10.1016/s0140-6736(03)13413-7.

36. Gheblawi M, Wang K, Viveiros A, et al. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: Celebrating the 20th anniversary of the discovery of ACE2. Circulation Research 2020; 126(10): 1456–1474. doi: 10.1161/CIRCRESAHA.120.317015.

37. Unudurthi SD, Luthra P, Bose RJC, et al. Cardiac inflammation in COVID-19: Lessons from heart failure. Life Sciences 2020; 260: 118482. doi: 10.1016/j.lfs.2020.118482.

38. Fattahi F, Kalbitz M, Malan EA, et al. Complement-induced activation of MAPKs and Akt during sepsis: Role in cardiac dysfunction. The FASEB Journal 2017; 31(9): 4129–4139. doi: 10.1096/fj.201700140R.

39. Cordero A, Santos García-Gallego C, Bertomeu-González V, et al. Mortality associated with cardiovascular disease in patients with COVID-19. REC: CardioClinics 2021; 56(1): 30–38. doi: 10.1016/j.rccl.2020.10.005.

40. Hamming I, Timens W, Bulthuis ML, et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. The Journal of Pathology 2004; 203(2): 631–637. doi: 10.1002/path.1570.

41. Naicker S, Yang CW, Hwang SJ, et al. The Novel Coronavirus 2019 epidemic and kidneys. Kidney International 2020; 97(5): 824–828. doi: 10.1016/j.kint.2020.03.001.

42. Qian J, Wang B, Liu B. Acute kidney injury in the 2019 novel coronavirus disease. Kidney Diseases 2020; 323: 1–6. doi: 10.1159/000509086.

43. Malik IO, Ladiwala N, Chinta S, et al. Severe acute respiratory syndrome coronavirus 2 induced focal segmental glomerulosclerosis. Cureus 2020; 12(10): e10898. doi: 10.7759/cureus.10898.

44. Minami T, Iwata Y, Wada T. Renal complications in coronavirus disease 2019: A systematic review. Inflammation and Regeneration 2020; 40(1): 31. doi: 10.1186/s41232-020-00140-9.

45. Kumar A, Faiq MA, Pareek V, et al. Relevance of SARS-CoV-2 related factors ACE2 and TMPRSS2 expressions in gastrointestinal tissue with pathogenesis of digestive symptoms, diabetes-associated mortality, and disease recurrence in COVID-19 patients. Medical Hypotheses 2020; 144: 110271. doi: 10.1016/j.mehy.2020.110271.

46. Lamers MM, Beumer J, van der Vaart J, et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369(6499): 50–54. doi: 10.1126/science.abc1669.

47. Sun J, Aghemo A, Forner A, Valenti L. COVID-19 and liver disease. Liver International 2020; 40(6): 1278–1281. doi: 10.1111/liv.14470.

48. Macor P, Durigutto P, Mangogna A, et al. Multiple-organ complement deposition on vascular endothelium in COVID-19 patients. Biomedicines 2021; 9(8): 1003. doi: 10.3390/biomedicines9081003.

49. Abenavoli L, Gentile I, Maraolo AE, Negro F. SARS-CoV-2 and liver damage: A possible pathogenetic link. Hepatobiliary Surgery and Nutrition 2020; 9(3): 322–324.

50. Tian S, Xiong Y, Liu H, et al. Pathological study of the 2019 novel coronavirus disease (COVID-19) through postmortem core biopsies. Modern Pathology 2020; 33(6): 1007–1014. doi: 10.1038/s41379-020-0536-x.

51. Xu L, Liu J, Lu M, et al. Liver injury during highly pathogenic human coronavirus infections. Liver International 2020; 40(5): 998–1004. doi: 10.1111/liv.14435.

52. Chai X, Hu L, Zhang Y, et al. Specific ACE2 expression in cholangiocytes may cause liver damage after 2019-nCoV infection [Internet]. bioRxiv. 2020 [updated 2020 Feb 4]. Available from: https://www.biorxiv.org/content/10.1101/2020.02.03.931766v1.

53. Abobaker A, Raba AA. Does COVID-19 affect male fertility? World Journal of Urology 2021; 39(3): 975–976. doi: 10.1007/s00345-020-03208-w.

54. Samuel RM, Majd H, Richter MN, et al. Androgen signaling regulates SARS-CoV-2 receptor levels and is associated with severe COVID-19 symptoms in men. Cell Stem Cell 2020; 27(6): 876–889.e812. doi: 10.1016/j.stem.2020.11.009.

55. Navarra A, Albani E, Castellano S, et al. Coronavirus Disease-19 infection: Implications on male fertility and reproduction. Frontiers in Physiology 2020; 11: 574761. doi: 10.3389/fphys.2020.574761.

56. Anifandis G, Messini CI, Daponte A, Messinis IE. COVID-19 and fertility: A virtual reality. Reproductive BioMedicine Online 2020; 41(2): 157–159. doi: 10.1016/j.rbmo.2020.05.001.

57. Freeman TL, Swartz TH. Targeting the NLRP3 inflammasome in severe COVID-19. Frontiers in Immunology 2020; 11: 1518. doi: 10.3389/fimmu.2020.01518.

58. Cecchini R, Cecchini AL. SARS-CoV-2 infection pathogenesis is related to oxidative stress as a response to aggression. Medical Hypotheses 2020; 143: 110102. doi: 10.1016/j.mehy.2020.110102.

59. Sengupta P, Dutta S. Does SARS-CoV-2 infection cause sperm DNA fragmentation? Possible link with oxidative stress. The European Journal of Contraception & Reproductive Health Care 2020; 25(5): 405–406. doi: 10.1080/13625187.2020.1787376.

60. Ashraf UM, Abokor AA, Edwards JM, et al. SARS-CoV-2, ACE2 expression, and systemic organ invasion. Physiological Genomics 2021; 53(2): 51–60. doi: 10.1152/physiolgenomics.00087.2020.

61. Badawi S, Ali BR. ACE2 nascence, trafficking, and SARS-CoV-2 pathogenesis: The saga continues. Human Genomics 2021; 15(1): 8. doi: 10.1186/s40246-021-00304-9.

62. Li S, Zhang Y, Guan Z, et al. SARS-CoV-2 triggers inflammatory responses and cell death through caspase-8 activation. Signal Transduction and Targeted Therapy 2020; 5(1): 235. doi: 10.1038/s41392-020-00334-0.

63. Paolini A, Borella R, De Biasi S, et al. Cell death in coronavirus infections: Uncovering its role during COVID-19. Cells 2021; 10(7): 1585. doi: 10.3390/cells10071585.

64. Hong S, Park S, Yu JW. Pyrin Domain (PYD)-containing inflammasome in innate immunity. Journal of Business Venturing 2011; 41(3): 133–146. doi: 10.4167/jbv.2011.41.3.133.

65. Li P, Chang M. Roles of PRR-mediated signaling pathways in the regulation of oxidative stress and inflammatory diseases. International Journal of Molecular Sciences 2021; 22(14): 7688. doi: 10.3390/ijms22147688.

66. Pan Y, Jiang X, Yang L, et al. SARS-CoV-2-specific immune response in COVID-19 convalescent individuals. Signal Transduction and Targeted Therapy 2021; 6(1): 256. doi: 10.1038/s41392-021-00686-1.

67. Ricci D, Etna MP, Rizzo F, et al. Innate immune response to SARS-CoV-2 infection: From cells to soluble mediators. International Journal of Molecular Sciences 2021; 22(13): 7017. doi: 10.3390/ijms22137017.

68. Wong LYR, Perlman S. Immune dysregulation and immunopathology induced by SARS-CoV-2 and related coronaviruses—Are we our own worst enemy? Nature Reviews Immunology 2022; 22(1): 47–56. doi: 10.1038/s41577-021-00656-2.

69. Jamal M, Bangash HI, Habiba M, et al. Immune dysregulation and system pathology in COVID-19. Virulence 2021; 12(1): 918–936. doi: 10.1080/21505594.2021.1898790.

70. Tahaghoghi-Hajghorbani S, Zafari P, Masoumi E, et al. The role of dysregulated immune responses in COVID-19 pathogenesis. Virus Research 2020; 290: 198197. doi: 10.1016/j.virusres.2020.198197.

71. Rabaan AA, Al-Ahmed SH, Muhammad J, et al. Role of inflammatory cytokines in COVID-19 patients: A review on molecular mechanisms, immune functions, immunopathology and immunomodulatory drugs to counter cytokine storm. Vaccines (Basel) 2021; 9(5): 436. doi: 10.3390/vaccines9050436.

72. Del Valle DM, Kim-Schulze S, Huang HH, et al. An inflammatory cytokine signature predicts COVID-19 severity and survival. Nature Medicine 2020; 26(10): 1636–1643. doi: 10.1038/s41591-020-1051-9.

73. Basile MS, Cavalli E, McCubrey J, et al. The PI3K/Akt/mTOR pathway: A potential pharmacological target in COVID-19. Drug Discovery Today 2022; 27(3): 848–856. doi: 10.1016/j.drudis.2021.11.002.

74. Ulrich H, Pillat MM. CD147 as a target for COVID-19 treatment: Suggested effects of azithromycin and stem cell engagement. Stem Cell Reviews and Reports 2020; 16(3): 434–440. doi: 10.1007/s12015-020-09976-7.

75. Java A, Apicelli AJ, Liszewski MK, et al. The complement system in COVID-19: Friend and foe? JCI Insight 2020; 5(15): e140711. doi: 10.1172/jci.insight.140711.

76. Taefehshokr N, Taefehshokr S, Hemmat N, Heit B. COVID-19: Perspectives on innate immune evasion. Frontiers in Immunology 2020; 11: 580641. doi: 10.3389/fimmu.2020.580641.

77. Hussman JP. Cellular and molecular pathways of COVID-19 and potential points of therapeutic intervention. Frontiers in Pharmacology 2020; 11: 1169. doi: 10.3389/fphar.2020.01169.

78. Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system Part I—Molecular mechanisms of activation and regulation. Frontiers in Immunology 2015; 6: 262. doi: 10.3389/fimmu.2015.00262.

79. Ibrahim MAA. Cell biology of the immune system. In: Goodman SR (editor). Goodman’s medical cell biology. 4th ed. Amsterdam: Elsevier Inc.; 2021. p. 337–360.

80. Amara U, Flierl MA, Rittirsch D, et al. Molecular intercommunication between the complement and coagulation systems. The Journal of Immunology 2010; 185(9): 5628–5636. doi: 10.4049/jimmunol.0903678.

81. Polycarpou A, Howard M, Farrar CA, et al. Rationale for targeting complement in COVID-19. EMBO Molecular Medicine 2020; 12(8): e12642. doi: 10.15252/emmm.202012642.

82. Ibrahim FB, Pang SJ, Melendez AJ. Anaphylatoxin signaling in human neutrophils. A key role for sphingosine kinase. Journal of Biological Chemistry 2004; 279(43): 44802–44811. doi: 10.1074/jbc.M403977200.

83. Yousefi S, Mihalache C, Kozlowski E, et al. Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death & Differentiation 2009; 16(11): 1438–1444. doi: 10.1038/cdd.2009.96.

84. Guo RF, Ward PA. Role of C5a in inflammatory responses. Annual Review of Immunology 2005; 23: 821–852. doi: 10.1146/annurev.immunol.23.021704.115835.

85. Barrett CD, Hsu AT, Ellson CD, et al. Blood clotting and traumatic injury with shock mediates complement-dependent neutrophil priming for extracellular ROS, ROS-dependent organ injury and coagulopathy. Clinical and Experimental Immunology 2018; 194(1): 103–117. doi: 10.1111/cei.13166.

86. Marchetti M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Annals of Hematology 2020; 99(8): 1701–1707. doi: 10.1007/s00277-020-04138-8.

87. Markiewski MM, Lambris JD. The role of complement in inflammatory diseases from behind the scenes into the spotlight. The American Journal of Pathology 2007; 171(3): 715–727. doi: 10.2353/ajpath.2007.070166.

88. Holter JC, Pischke SE, de Boer E, et al. Systemic complement activation is associated with respiratory failure in COVID-19 hospitalized patients. Proceedings of the National Academy of Sciences of the United States of America 2020; 117(40): 25018–25025. doi: 10.1073/pnas.2010540117.

89. Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 2020; 181(2): 281–292. doi: 10.1016/j.cell.2020.02.058.

90. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 2020; 181(5): 1036–1045. doi: 10.1016/j.cell.2020.04.026.

91. Blanco-Melo D, Nilsson-Payant BE, Liu WC, et al. SARS-CoV-2 launches a unique transcriptional signature from in vitro, ex vivo, and in vivo systems [Internet]. bioRxiv. 2020 [updated 2020 Mar 24]. Available from: https://www.biorxiv.org/content/10.1101/2020.03.24.004655v1.

92. Gao T, Hu M, Zhang X, et al. Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation [Internet]. medRxiv. 2020 [updated 2020 Jun 8]. Available from: https://www.medrxiv.org/content/10.1101/2020.03.29.20041962v3.

93. Megyeri M, Makó V, Beinrohr L, et al. Complement protease MASP-1 activates human endothelial cells: PAR4 activation is a link between complement and endothelial function. The Journal of Immunology 2009; 183(5): 3409–3416. doi: 10.4049/jimmunol.0900879.

94. Eriksson O, Hultström M, Persson B, et al. Mannose-binding lectin is associated with thrombosis and coagulopathy in critically ill COVID-19 patients. Journal of Thrombosis and Haemostasis 2020; 120(12): 1720–1724. doi: 10.1055/s-0040-1715835.

95. Laurence J, Mulvey JJ, Seshadri M, et al. Anti-complement C5 therapy with eculizumab in three cases of critical COVID-19. Clinical Immunology 2020; 219: 108555. doi: 10.1016/j.clim.2020.108555.

96. Peffault de Latour R, Bergeron A, Lengline E, et al. Complement C5 inhibition in patients with COVID-19—A promising target? Haematologica 2020; 105(12): 2847–2850. doi: 10.3324/haematol.2020.260117.

97. Ip WK, Chan KH, Law HK, et al. Mannose-binding lectin in severe acute respiratory syndrome coronavirus infection. The Journal of Infectious Diseases 2005; 191(10): 1697–1704. doi: 10.1086/429631.

98. Zelek WM, Cole J, Ponsford MJ, et al. Complement inhibition with the C5 blocker LFG316 in severe COVID-19. American Journal of Respiratory and Critical Care Medicine 2020; 202(9): 1304–1308. doi: 10.1164/rccm.202007-2778LE.

99. Guillon P, Clément M, Sébille V, et al. Inhibition of the interaction between the SARS-CoV spike protein and its cellular receptor by anti-histo-blood group antibodies. Glycobiology 2008; 18(12): 1085–1093. doi: 10.1093/glycob/cwn093.

100. Preece AF, Strahan KM, Devitt J, et al. Expression of ABO or related antigenic carbohydrates on viral envelopes leads to neutralization in the presence of serum containing specific natural antibodies and complement. Blood 2002; 99(7): 2477–2482. doi: 10.1182/blood.v99.7.2477.

101. Zietz M, Zucker J, Tatonetti NP. Testing the association between blood type and COVID-19 infection, intubation, and death [Internet]. medRxiv. 2020 [updated 2020 Apr 11]. Available from: https://www.medrxiv.org/content/10.1101/2020.04.08.20058073v1.

102. Chauhan AJ, Wiffen LJ, Brown TP. COVID-19: A collision of complement, coagulation and inflammatory pathways. Journal of Thrombosis and Haemostasis 2020; 18(9): 2110–2117. doi: 10.1111/jth.14981.

103. Ward PA. Editorial commentary: New strategies for treatment of humans with acute lung injury/acute respiratory distress syndrome. Clinical Infectious Diseases 2015; 60(4): 596, 597. doi: 10.1093/cid/ciu892.

104. Liszewski MK, Kolev M, Le Friec G, et al. Intracellular complement activation sustains T cell homeostasis and mediates effector differentiation. Immunity 2013; 39(6): 1143–1157. doi: 10.1016/j.immuni.2013.10.018.

105. Moore CB, Ting JP. Regulation of mitochondrial antiviral signaling pathways. Immunity 2008; 28(6): 735–739. doi: 10.1016/j.immuni.2008.05.005.

106. Mastaglio S, Ruggeri A, Risitano AM, et al. The first case of COVID-19 treated with the complement C3 inhibitor AMY-101. Clinical Immunology 2020; 215: 108450. doi: 10.1016/j.clim.2020.108450.

107. Diurno F, Numis FG, Porta G, et al. Eculizumab treatment in patients with COVID-19: Preliminary results from real life ASL Napoli 2 Nord experience. European Review for Medical and Pharmacological Sciences 2020; 24(7): 4040–4047. doi: 10.26355/eurrev_202004_20875.

108. Atkinson JP, Du Clos TW, Mold C, et al. The human complement system: Basic concepts and clinical relevance. In: Clinical immunology: Principles and practice. 5th ed. Amsterdam: Elsevier Ltd.; 2019. p. 299–317.

109. Deckert A, Anders S, de Allegri M, et al. Effectiveness and cost-effectiveness of four different strategies for SARS-CoV-2 surveillance in the general population (CoV-Surv Study): A structured summary of a study protocol for a cluster-randomised, two-factorial controlled trial. Trials 2021; 22(1): 39. doi: 10.1186/s13063-020-04982-z.

110. Urwyler P, Moser S, Charitos P, et al. Treatment of COVID-19 with conestat Alfa, a regulator of the complement, contact activation and kallikrein-kinin system. Frontiers in Immunology 2020; 11: 2072. doi: 10.3389/fimmu.2020.02072.

111. Ricklin D, Lambris JD. Compstatin: A complement inhibitor on its way to clinical application. Advances in Experimental Medicine and Biology 2008; 632: 273–292. doi: 10.1007/978-0-387-78952-1_20.

112. Risitano AM, Kulasekararaj AG, Lee JW, et al. Danicopan: An oral complement factor D inhibitor for paroxysmal nocturnal hemoglobinuria. Haematologica 2021; 106(12): 3188–3197. doi: 10.3324/haematol.2020.261826.

113. Harboe M, Ulvund G, Vien L, et al. The quantitative role of alternative pathway amplification in classical pathway induced terminal complement activation. Clinical and Experimental Immunology 2004; 138(3): 439–446. doi: 10.1111/j.1365-2249.2004.02627.x.

114. Patel JA, Ghatak SB. Pexelizumab and its role in the treatment of myocardial infarction and in coronary artery bypass graft surgery: A review. Recent Patents on Cardiovascular Drug Discover 2008; 3(2): 145–152. doi: 10.2174/157489008784705322.

115. Granger CB, Mahaffey KW, Weaver WD, et al. Pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to primary percutaneous coronary intervention in acute myocardial infarction: The COMplement inhibition in Myocardial infarction treated with Angioplasty (COMMA) trial. Circulation 2003; 108(10): 1184–1190. doi: 10.1161/01.Cir.0000087447.12918.85.

116. Barkoff CM, Mousa SA. Pharmacotherapy in COVID 19: Potential impact of targeting the complement system. Biomedicines 2020; 9(1): 11. doi: 10.3390/biomedicines9010011.

117. Sun S, Zhao G, Liu C, et al. Treatment with anti-C5a antibody improves the outcome of H7N9 virus infection in African green monkeys. Clinical Infectious Diseases 2015; 60(4): 586–595. doi: 10.1093/cid/ciu887.

118. Sun S, Jiang Y, Wang R, et al. Treatment of paraquat-induced lung injury with an anti-C5a antibody: Potential clinical application. Critical Care Medicine 2018; 46(5): e419–e425. doi: 10.1097/ccm.0000000000002950.

119. Carvelli J, Demaria O, Vély F, et al. Association of COVID-19 inflammation with activation of the C5a-C5aR1 axis. Nature 2020; 588(7836): 146–150. doi: 10.1038/s41586-020-2600-6.

120. Farhangnia P, Dehrouyeh S, Safdarian AR, et al. Recent advances in passive immunotherapies for COVID-19: The evidence-based approaches and clinical trials. International Immunopharmacology 2022; 109: 108786. doi: https://doi.org/10.1016/j.intimp.2022. 108786.

121. Lee JW, Sicre de Fontbrune F, Wong Lee Lee L, et al. Ravulizumab (ALXN1210) vs eculizumab in adult patients with PNH naive to complement inhibitors: The 301 study. Blood 2019; 133(6): 530–539. doi: 10.1182/blood-2018-09-876136.

122. McEneny-King AC, Monteleone JPR, Kazani SD, Ortiz SR. Pharmacokinetic and pharmacodynamic evaluation of ravulizumab in adults with severe Coronavirus Disease 2019. Infectious Diseases and Therapy 2021; 10(2): 1045–1054. doi: 10.1007/s40121-021-00425-7.

123. Shikdar S, Borogovac A, Mohamad E, Khawandanah M. COVID19 infection in a patient undergoing treatment for Paroxysmal Nocturnal Hemoglobinuria (PNH) with Ravulizumab. Thrombosis Journal 2021; 19(1): 75–75. doi: 10.1186/s12959-021-00330-6.

124. Annane D, Heming N, Grimaldi-Bensouda L, et al. Eculizumab as an emergency treatment for adult patients with severe COVID-19 in the intensive care unit: A proof-of-concept study. eClinicalMedicine 2020; 28: 100590. doi: 10.1016/j.eclinm.2020.100590.

125. Kumar V, Lee JD, Clark RJ, et al. Preclinical pharmacokinetics of complement C5a receptor antagonists PMX53 and PMX205 in mice. ACS Omega 2020; 5(5): 2345–2354. doi: 10.1021/acsomega.9b03735.

126. Ager RR, Fonseca MI, Chu SH, et al. Microglial C5aR (CD88) expression correlates with amyloid-beta deposition in murine models of Alzheimer's disease. Journal of Neurochemistry 2010; 113(2): 389–401. doi: 10.1111/j.1471-4159.2010.06595.x.

127. Woodruff TM, Costantini KJ, Crane JW, et al. The complement factor C5a contributes to pathology in a rat model of amyotrophic lateral sclerosis. The Journal of Immunology 2008; 181(12): 8727–8734. doi: 10.4049/jimmunol.181.12.8727.

128. Biggins PJC, Brennan FH, Taylor SM, et al. The alternative receptor for complement component 5a, C5aR2, conveys neuroprotection in traumatic spinal cord injury. Journal of Neurotrauma 2017; 34(12): 2075–2085. doi: 10.1089/neu.2016.4701.

129. Howard JF Jr., Vissing J, Gilhus NE, et al. Zilucoplan: An investigational complement C5 inhibitor for the treatment of acetylcholine receptor autoantibody-positive generalized myasthenia gravis. Expert Opinion on Investigational Drugs 2021; 30(5): 483–493. doi: 10.1080/13543784.2021.1897567.

130. Declercq J, Bosteels C, Van Damme K, et al. Zilucoplan in patients with acute hypoxic respiratory failure due to COVID-19 (ZILU-COV): A structured summary of a study protocol for a randomised controlled trial. Trials 2020; 21(1): 934. doi: 10.1186/s13063-020-04884-0.

131. Rambaldi A, Gritti G, Micò MC, et al. Endothelial injury and thrombotic microangiopathy in COVID-19: Treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology 2020; 225(6): 152001. doi: 10.1016/j.imbio.2020.152001.

132. Ali YM, Ferrari M, Lynch NJ, et al. Lectin pathway mediates complement activation by SARS-CoV-2 proteins. Frontiers in Immunology 2021; 12: 714511. doi: 10.3389/fimmu.2021.714511.

133. Garcia-Beltran WF, St. Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant [Internet]. medRxiv. 2021 [updated 2021 Dec 14]. Available from: https://www.medrxiv.org/content/10.1101/2021.12.14.21267755v1.

134. Furukawa K, Tjan LH, Kurahashi Y, et al. Assessment of neutralizing antibody response against SARS-CoV-2 variants after 2 to 3 doses of the BNT162b2 mRNA COVID-19 vaccine. JAMA Network Open 2022; 5(5): e2210780. doi: 10.1001/jamanetworkopen.2022.10780.

135. Muena NA, García-Salum T, Pardo-Roa C, et al. Induction of SARS-CoV-2 neutralizing antibodies by CoronaVac and BNT162b2 vaccines in naïve and previously infected individuals. EBioMedicine 2022; 78: 103972. doi: 10.1016/j.ebiom.2022.103972.

136. Evans JP, Zeng C, Carlin C, et al. Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Science Translational Medicine 2022; 14(637): eabn8057. doi: 10.1126/scitranslmed.abn8057.

137. Jarlhelt I, Nielsen SK, Jahn CXH, et al. SARS-CoV-2 antibodies mediate complement and cellular driven inflammation. Frontiers in Immunology 2021; 12: 767981. doi: 10.3389/fimmu.2021.767981.

138. Abu-Humaidan AHA, Ahmad FM, Awajan D, et al. Anti-SARS-Cov-2 S-RBD IgG formed after BNT162b2 vaccination can bind C1q and activate complement [Internet]. bioRxiv. 2022 [updated 2022 Apr 26]. Available from: https://www.biorxiv.org/content/10.1101/2022.04.24.489298v1.




DOI: https://doi.org/10.24294/ti.v6.i2.1834

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Gilda Parsamanesh, Pooya Farhangnia, Milad Karimi, Amirhossein Khosrozadeh Ghomi, Shiva Dehrouyeh, Azin Aghamajidi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.