Immunotherapy for triple-negative breast cancer

Yin He, Xiaosheng Wang

Article ID: 1793
Vol 6, Issue 2, 2022, Article identifier:43-49

VIEWS - 123 (Abstract) 47 (PDF)


Breast cancer (BC) is the most common cancer and one of the leading causes of cancer death in women. Triple-negative breast cancer (TNBC) is a typical subtype of breast cancer with lack of estrogen and progesterone receptors and has low expression levels of human epidermal growth factor receptor 2 (HER2), accounting for 15%–20% of all BC cases. In comparation with other subtypes of BC, TNBC displays stronger invasiveness, higher recurrence rate and poorer prognosis. Due to lack of targeted therapies and limited benefit from chemotherapy, abundant investigations have been committed to discover effective molecular targets and treatment approaches for TNBC patients. During the past decade, emerging evidence has shown that compared to other subtypes of BC, TNBC is more immunogenic, has higher expression levels of programmed death ligand-1 (PD-L1) and higher rates of CD8+ T cell infiltration. Thus, TNBC is deemed to be most suitable for immunotherapy among all BC subtypes.


Triple-negative Breast Cancer; Immunotherapy; Immune Checkpoint Blockade

Full Text:



Abbott M, Ustoyev Y. Cancer and the immune system: The history and background of immunotherapy. Seminars in Oncology Nursing 2019; 35(5): 150923. doi: 10.1016/j.soncn.2019.08.002.

Furukawa F. The Nobel Prize in Physiology or Medicine 2018 was awarded to cancer therapy by inhibition of negative immune regulation. Trends in Immunotherapy 2018; 2(1). doi: 10.24294/ti.v2.i1.1065.

Darvin P, Toor SM, Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors: Recent progress and potential biomarkers. Experimental & Molecular Medicine 2018; 50(12): 1–11. doi: 10.1038/s12276-018-0191-1.

Naimi A, Mohammed RN, Raji A, et al. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); The pros and cons. Cell Communication and Signaling 2022; 20(1): 1–31. doi: 10.1186/s12964-022-00854-y.

Cristescu R, Mogg R, Ayers M, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018; 362(6411): eaar3593. doi: 10.1126/science.aar3593.

Patel SP, Kurzrock R. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Molecular Cancer Therapeutics 2015; 14(4): 847–856. doi: 10.1158/1535-7163.MCT-14-0983.

Allgauer M, Budczies J, Christopoulos P, et al. Implementing tumor mutational burden (TMB) analysis in routine diagnostics-a primer for molecular pathologists and clinicians. Translational Lung Cancer Research 2018; 7(6): 703–715. doi: 10.21037/tlcr.2018.08.14.

Oliveira AF, Bretes L, Furtado I. Review of PD-1/PD-L1 inhibitors in metastatic dMMR/MSI-H colorectal cancer. Frontiers in Oncology 2019; 9: 396. doi: 10.3389/fonc.2019.00396.

Haanen J. Converting cold into hot tumors by combining immunotherapies. Cell 2017; 170(6): 1055–1056. doi: 10.1016/j.cell.2017.08.031.

Bense RD, Sotiriou C, Piccart-Gebhart MJ, et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. Journal of the National Cancer Institute 2017; 109(1): djw192. doi: 10.1093/jnci/djw192.

Loi S, Sirtaine N, Piette F, et al. Prognostic and predictive value of tumor-infiltrating lymphocytes in a phase III randomized adjuvant breast cancer trial in node-positive breast cancer comparing the addition of docetaxel to doxorubicin with doxorubicin-based chemotherapy: BIG 02-98. Journal of Clinical Oncology 2013; 31(7): 860–867. doi: 10.1200/JCO.2011.41.0902.

Wang X, Li M. Correlate tumor mutation burden with immune signatures in human cancers. BMC Immunology 2019; 20(1): 1–

doi: 10.1186/s12865-018-0285-5.

Liu Z, Li M, Jiang Z, Wang X. A comprehensive immunologic portrait of triple-negative breast cancer. Translational Oncology 2018; 11(2): 311–329. doi: 10.1016/j.tranon.2018.01.011.

Wang X, Guda C. Integrative exploration of genomic profiles for triple negative breast cancer identifies potential drug targets. Medicine (Baltimore) 2016; 95(30): e4321. doi: 10.1097/MD.0000000000004321.

Liu Z, Jiang Z, Gao Y, et al. TP53 mutations promote immunogenic activity in breast cancer. Journal of Oncology 2019; 2019: 1–19. doi: 10.1155/2019/5952836.

Nanda R, Chow LQ, Dees EC, et al. Pembrolizumab in patients with advanced triple-negative breast cancer: Phase Ib KEYNOTE-012 study. Journal of Clinical Oncology 2016; 34(21): 2460–2467. doi: 10.1200/JCO.2015.64.8931.

Adams S, Loi S, Toppmeyer D, et al. Pembrolizumab monotherapy for previously untreated, PD-L1-positive, metastatic triple-negative breast cancer: Cohort B of the phase II KEYNOTE-086 study. Annals of Oncology 2019; 30(3): 405–411. doi: 10.1093/annonc/mdy518.

Adams S, Schmid P, Rugo HS, et al. Pembrolizumab monotherapy for previously treated metastatic triple-negative breast cancer: Cohort A of the phase II KEYNOTE-086 study. Annals of Oncology 2019; 30(3): 397–404. doi: 10.1093/annonc/mdy517.

Winer EP, Lipatov O, Im SA, et al. Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): A randomised, open-label, phase 3 trial. The Lancet Oncology 2021; 22(4): 499–511. doi: 10.1016/S1470-2045(20)30754-3.

Demaria S, Volm MD, Shapiro RL, et al. Development of tumor-infiltrating lymphocytes in breast cancer after neoadjuvant paclitaxel chemotherapy. Clinical Cancer Research 2001; 7(10): 3025–3030.

Kodumudi KN, Woan K, Gilvary DL, et al. A novel chemoimmunomodulating property of docetaxel: Suppression of myeloid-derived suppressor cells in tumor bearers. Clinical Cancer Research 2010; 16(18): 4583–4594. doi: 10.1158/1078-0432.CCR-10-0733

Ghiringhelli F, Menard C, Puig PE, et al. Metronomic cyclophosphamide regimen selectively depletes CD4+ CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunology, Immunotherapy 2007; 56(5): 641–648. doi: 10.1007/s00262-006-0225-8.

Kwa M, Li X, Novik Y, et al. Serial immunological parameters in a phase II trial of exemestane and low-dose oral cyclophosphamide in advanced hormone receptor-positive breast cancer. Breast Cancer Research and Treatment 2018; 168(1): 57–67. doi: 10.1007/s10549-017-4570-4.

Schmid P, Adams S, Rugo HS, et al. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. New England Journal of Medicine 2018; 379(22): 2108–2121. doi: 10.1056/NEJMoa1809615

Schmid P, Rugo HS, Adams S, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): Updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. The Lancet Oncology 2020; 21(1): 44–59. doi: 10.1016/S1470-2045(19)30689-8.

Miles D, Gligorov J, Andre F, et al. Primary results from IMpassion131, a double-blind, placebo-controlled, randomised phase III trial of first-line paclitaxel with or without atezolizumab for unresectable locally advanced/metastatic triple-negative breast cancer. Annals of Oncology 2021; 32(8): 994–1004. doi: 10.1016/j.annonc.2021.05.801.

Cortes J, Cescon DW, Rugo HS, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): A randomised, placebo-controlled, double-blind, phase 3 clinical trial. The Lancet 2020; 396(10265): 1817–1828. doi: 10.1016/S0140-6736(20)32531-9.

Cortes J, Rugo HS, Cescon DW, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. New England Journal of Medicine 2022; 387(3): 217–226. doi: 10.1056/NEJMoa2202809.

Mittendorf EA, Zhang H, Barrios CH, et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): A randomised, double-blind, phase 3 trial. The Lancet 2020; 396(10257): 1090–1100. doi: 10.1016/S0140-6736(20)31953-X.

Loibl S, Untch M, Burchardi N, et al. A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: Clinical results and biomarker analysis of GeparNuevo study. Annals of Oncology 2019; 30(8): 1279–1288. doi:

Schmid P, Cortes J, Pusztai L, et al. Pembrolizumab for early triple-negative breast cancer. New England Journal of Medicine 2020; 382(9): 810–821. doi: 10.1056/NEJMoa1910549.

Schmid P, Cortes J, Dent R, et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. New England Journal of Medicine 2022; 386(6): 556–567. doi: 10.1056/NEJMoa2112651.

Gianni L, Huang CS, Egle D, et al. Pathologic complete response (pCR) to neoadjuvant treatment with or without atezolizumab in triple-negative, early high-risk and locally advanced breast cancer: NeoTRIP Michelangelo randomized study. Annals of Oncology 2022; 33(5): 534–543. doi: 10.1016/j.annonc.2022.02.004.

Wolf DM, Yau C, Wulfkuhle J, et al. Redefining breast cancer subtypes to guide treatment prioritization and maximize response: Predictive biomarkers across 10 cancer therapies. Cancer Cell 2022; 40(6): 609–623. doi: 10.1016/j.ccell.2022.05.005.

He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers based on immunogenomic profiling. Journal of Experimental & Clinical Cancer Research 2018; 37(1): 1–13. doi: 10.1186/s13046-018-1002-1.

Li M, Zhang Z, Li L, Wang X. An algorithm to quantify intratumor heterogeneity based on alterations of gene expression profiles. Communications Biology 2020; 3(1): 1–19. doi: 10.1038/s42003-020-01230-7.



  • There are currently no refbacks.

Copyright (c) 2022 Yin He, Xiaosheng Wang

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.