References
Asano Y, Takahashi T, Saigusa R. Systemic sclerosis: Is the epithelium a missing piece of the pathogenic puzzle? Journal of Dermatological Science 2019; 94(2): 259–265. doi: 10.1016/j.jdermsci.2019.04.007
Korman B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Translational Research 2019; 209: 77–89. doi: 10.1016/j.trsl.2019.02.010
Leask A. Towards an anti-fibrotic therapy for scleroderma: Targeting myofibroblast differentiation and recruitment. Fibrogenesis & Tissue Repair 2010; 3: 8. doi: 10.1186/1755-1536-3-8
Serrati S, Chilla A, Laurenzana A, et al. Systemic sclerosis endothelial cells recruit and activate dermal fibroblasts by induction of a connective tissue growth factor (CCN2)/transforming growth factor beta-dependent mesenchymal-to-mesenchymal transition. Arthritis & Rheumatology 2013; 65(1): 258–269. doi: 10.1002/art.37705
Furue M, Mitoma C, Mitoma H, et al. Pathogenesis of systemic sclerosis-current concept and emerging treatments. Immunologic Research 2017; 65(4): 790–797. doi: 10.1007/s12026-017-8926-y
Shook BA, Wasko RR, Rivera-Gonzalez GC, et al. Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair. Science 2018; 362(6417). doi: 10.1126/science.aar2971
Jinnin M. Mechanisms of skin fibrosis in systemic sclerosis. The Journal of Dermatology 2010; 37(1): 11–25. doi: 10.1111/j.1346-8138.2009.00738.x
Ihn H. The role of TGF-β signaling in the pathogenesis of fibrosis in scleroderma. Archivum Immunologiae et Therapiae Experimentali 2002; 50(5): 325–331.
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-beta, WNT, and YAP/TAZ Converge. Frontiers in Medicine 2015; 2: 59. doi: 10.3389/fmed.2015.00059
Asano Y, Ihn H, Yamane K, et al. Impaired Smad7-Smurf-mediated negative regulation of TGF-β signaling in scleroderma fibroblasts. The Journal of Clinical Investigation 2004; 113(2): 253–264. doi: 10.1172/JCI16269
Noda S, Asano Y, Nishimura S, et al. Simultaneous downregulation of KLF5 and Fli1 is a key feature underlying systemic sclerosis. Nature Communications 2014; 5: 5797. doi: 10.1038/ncomms6797
Wernig G, Chen SY, Cui L, et al. Unifying mechanism for different fibrotic diseases. Proceedings of the National Academy of Sciences of the United States of America 2017; 114(18): 4757–4762. doi: 10.1073/pnas.1621375114
Maurer B, Busch N, Jüngel A, et al. Transcription factor fos-related antigen-2 induces progressive peripheral vasculopathy in mice closely resembling human systemic sclerosis. Circulation 2009; 120(23): 2367–2376. doi: 10.1161/CIRCULATIONAHA.109.855114
Takeda N, Manabe I, Uchino Y, et al. Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. The Journal of Clinical Investigation 2010; 120(1): 254–265. doi: 10.1172/JCI40295
Fujiu K, Manabe I, Nagai R. Renal collecting duct epithelial cells regulate inflammation in tubulointerstitial damage in mice. The Journal of Clinical Investigation 2011; 121(9): 3425–3441. doi: 10.1172/JCI57582
Whitfield ML, Finlay DR, Murray JI, et al. Systemic and cell type-specific gene expression patterns in scleroderma skin. Proceedings of the National Academy of Sciences of the United States of America 2003; 100(21): 12319–12324. doi: 10.1073/pnas.163511410
Pedroza M, Le TT, Lewis K, et al. STAT-3 contributes to pulmonary fibrosis through epithelial injury and fibroblast-myofibroblast differentiation. The FASEB Journal 2016; 30(1): 129–140. doi: 10.1096/fj.15-273953
Rueda B, Broen J, Simeon C, et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Human Molecular Genetics 2009; 18(11): 2071–2077. doi: 10.1093/hmg/ddp119
Bhattacharyya S, Wang W, Qin W, et al. TLR4-dependent fibroblast activation drives persistent organ fibrosis in skin and lung. JCI Insight 2018; 3(13): e98850. doi: 10.1172/jci.insight.98850
Bhattacharyya S, Tamaki Z, Wang W, et al. FibronectinEDA promotes chronic cutaneous fibrosis through Toll-like receptor signaling. Science Translational Medicine 2014; 6(232): 232–250. doi: 10.1126/scitranslmed.3008264
Sakoguchi A, Nakayama W, Jinnin M, et al. The expression profile of the toll-like receptor family in scleroderma dermal fibroblasts. Clinical and Experimental Rheumatology 2014; 32(6 Suppl 86): S-4–9.
Fang F, Marangoni RG, Zhou X, et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor β-dependent fibroblast activation. Arthritis & Rheumatology 2016; 68(8): 1989–2002. doi: 10.1002/art.39655
Ihn H, Yamane K, Kubo M, et al. Blockade of endogenous transforming growth factor β signaling prevents up-regulated collagen synthesis in scleroderma fibroblasts: Association with increased expression of transforming growth factor β receptors. Arthritis & Rheumatology 2001; 44(2): 474–480. doi: 10.1002/1529-0131(200102)44:2<474::AID-ANR67>3.0.CO;2-%23
Ihn H. Autocrine TGF-β signaling in the pathogenesis of systemic sclerosis. Journal of Dermatological Science 2008; 49: 103–113.
Asano Y, Ihn H, Yamane K, et al. Involvement of αvβ5 integrin-mediated activation of latent transforming growth factor β1 in autocrine transforming growth factor β signaling in systemic sclerosis fibroblasts. Arthritis & Rheumatology 2005; 52(9): 2897–2905. doi: 10.1002/art.21246
Wei J, Fang F, Lam AP, et al. Wnt/beta-catenin signaling is hyperactivated in systemic sclerosis and induces Smad-dependent fibrotic responses in mesenchymal cells. Arthritis & Rheumatology 2012; 64(8): 2734–2745. doi: 10.1002/art.34424
Sacchetti C, Bai Y, Stanford SM, et al. PTP4A1 promotes TGFbeta signaling and fibrosis in systemic sclerosis. Nature Communications 2017; 8(1): 1060. doi: 10.1038/s41467-017-01168-1
Takehara K. Hypothesis: Pathogenesis of systemic sclerosis. The Journal of Rheumatology 2003; 30(4): 755–759.
Fonseca C, Lindahl GE, Ponticos M, et al. A polymorphism in the CTGF promoter region associated with systemic sclerosis. The New England Journal of Medicine 2007; 357: 1210–1220. doi: 10.1056/NEJMoa067655
Artlett CM, Sassi-Gaha S, Rieger JL, et al. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis & Rheumatology 2011; 63(11): 3563–3574. doi: 10.1002/art.30568
Kawaguchi Y, Hara M, Wright TM. Endogenous IL-1alpha from systemic sclerosis fibroblasts induces IL-6 and PDGF-A. The Journal of Clinical Investigation 1999; 103(9): 1253–1260. doi: 10.1172/JCI4304
Salmon-Ehr V, Serpier H, Nawrocki B, et al. Expression of interleukin-4 in scleroderma skin specimens and scleroderma fibroblast cultures. Potential role in fibrosis. Archives of Dermatology 1996; 132(7): 802–806. doi: 10.1001/archderm.1996.03890310088013
Postlethwaite AE, Holness MA, Katai H, et al. Human fibroblasts synthesize elevated levels of extracellular matrix proteins in response to interleukin 4. The Journal of Clinical Investigation 1992; 90(4): 1479–1485. doi: 10.1172/JCI116015
Jinnin M, Ihn H, Yamane K, et al. Interleukin-13 stimulates the transcription of the human α2(I) collagen gene in human dermal fibroblasts. Journal of Biological Chemistry 2004; 279(40): 41783–41791. doi: 10.1074/jbc.M406951200
Kaviratne M, Hesse M, Leusink M, et al. IL-13 activates a mechanism of tissue fibrosis that is completely TGF-beta independent. The Journal of Immunology 2004; 173(6): 4020–4029. doi: 10.4049/jimmunol.173.6.4020
Hasegawa M, Sato S, Fujimoto M, et al. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. The Journal of Rheumatology 1998; 25(2): 308–313. PMID: 9489824
O’Reilly S, Ciechomska M, Cant R, et al. Interleukin-6 (IL-6) trans signaling drives a STAT3-dependent pathway that leads to hyperactive transforming growth factor-beta (TGF-beta) signaling promoting SMAD3 activation and fibrosis via Gremlin protein. Journal of Biologcial Chemistry 2014; 289(14): 9952–9960. doi: 10.1074/jbc.M113.545822
Laurent P, Sisirak V, Lazaro E, et al. Innate immunity in systemic sclerosis fibrosis: Recent advances. Frontiers of Immunology 2018; 9: 1702. doi: 10.3389/fimmu.2018.01702
Nakashima T, Jinnin M, Yamane K, et al. Impaired IL-17 signaling pathway contributes to the increased collagen expression in scleroderma fibroblasts. The Journal of Immunology 2012; 188(8): 3573–3583. doi: 10.4049/jimmunol.1100591
Okamoto Y, Hasegawa M, Matsushita T, et al. Potential roles of interleukin-17A in the development of skin fibrosis in mice. Arthritis & Rheumatology 2012; 64(11): 3726–3735. doi: 10.1002/art.34643
Varga J, Abraham D. Systemic sclerosis: A prototypic multisystem fibrotic disorder. The Journal of Clinical Investigation 2007; 117(3): 557–567. doi: 10.1172/JCI31139
Leask A. Getting out of a sticky situation: Targeting the myofibroblast in scleroderma. The Open Rheumatology Journal 2012; 6: 163–169. doi: 10.2174/1874312901206010163
Kawaguchi Y, Takagi K, Hara M, et al. Angiotensin II in the lesional skin of systemic sclerosis patients contributes to tissue fibrosis via angiotensin II type 1 receptors. Arthritis & Rheumatology 2004: 216–226. doi: 10.1002/art.11364
Gay S, Jones Jr RE, Huang GQ, et al. Immunohistologic demonstration of platelet-derived growth factor (PDGF) and sis-oncogene expression in scleroderma. Journal of Investigative Dermatology 1989; 92(2): 301–303.
Baroni SS, Santillo M, Bevilacqua F, et al. Stimulatory autoantibodies to the PDGF receptor in systemic sclerosis. The New England Journal of Medicine 2006; 354(25): 2667–2676. doi: 10.1056/NEJMoa052955
Higgs BW, Liu Z, White B, et al. Patients with systemic lupus erythematosus, myositis, rheumatoid arthritis and scleroderma share activation of a common type I interferon pathway. Annals of the Rheumatic Diseases 2011; 70(11): 2029–2036.
Sharif R, Mayes MD, Tan FK, et al. IRF5 polymorphism predicts prognosis in patients with systemic sclerosis. Annals of the Rheumatic Diseases 2012; 71(7): 1197–1202.
Christmann RB, Sampaio-Barros P, Stifano G, et al. Association of interferon- and transforming growth factor beta-regulated genes and macrophage activation with systemic sclerosis-related progressive lung fibrosis. Arthritis & Rheumatology 2014; 66(3): 714–725. doi: 10.1002/art.38288
Kajihara I, Jinnin M, Honda N, et al. Scleroderma dermal fibroblasts overexpress vascular endothelial growth factor due to autocrine transforming growth factor β signaling. Modern Rheumatology 2013; 23(3): 516–524. doi: 10.3109/s10165-012-0698-6
Maurer B, Distler A, Suliman YA, et al. Vascular endothelial growth factor aggravates fibrosis and vasculopathy in experimental models of systemic sclerosis. Annals of the Rheumatic Diseases 2014; 73(10): 1880–1887.
Wei J, Melichian D, Komura K, et al. Canonical Wnt signaling induces skin fibrosis and subcutaneous lipoatrophy: A novel mouse model for scleroderma? Arthritis Rheum 2011; 63(6): 1707–1717.
Dees C, Distler JH. Canonical Wnt signalling as a key regulator of fibrogenesis—Implications for targeted therapies? Experimental Dermatology 2013; 22(11): 710–713. doi: 10.1111/exd.12255
Horn A, Palumbo K, Cordazzo C, et al. Hedgehog signaling controls fibroblast activation and tissue fibrosis in systemic sclerosis. Arthritis & Rheumatology 2012; 64(8): 2724–2733. doi: 10.1002/art.34444
Hasegawa M, Sato S, Echigo T, et al. Up regulated expression of fractalkine/CX3CL1 and CX3CR1 in patients with systemic sclerosis. Annals of the Rheumatic Diseases 2005; 64(1): 21–28.
Luong VH, Utsunomiya A, Chino T, et al. Inhibition of the progression of skin inflammation, fibrosis, and vascular injury by blockade of the CX3 CL1/CX3 CR1 pathway in experimental mouse models of systemic sclerosis. Arthritis & Rheumatology 2019; 71(11): 1923–1934. doi: 10.1002/art.41009
Higashi-Kuwata N, Jinnin M, Makino T, et al. Characterization of monocyte/macrophage subsets in the skin and peripheral blood derived from patients with systemic sclerosis. Arthritis Research & Therapy 2010; 12(4): 128. doi: 10.1186/ar3066
Dumoitier N, Chaigne B, Regent A, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor beta and activate fibroblasts. Arthritis & Rheumatology 2017; 69(5): 1078–1089. doi: 10.1002/art.40016
Choi MY, Fritzler MJ. Progress in understanding the diagnostic and pathogenic role of autoantibodies associated with systemic sclerosis. Current Opinion in Rheumatology 2016; 28(6): 586–594. doi: 10.1097/BOR.0000000000000325
Mavropoulos A, Simopoulou T, Varna A, et al. Breg cells are numerically decreased and functionally impaired in patients with systemic sclerosis. Arthritis & Rheumatology 2016; 68(2): 494–504. doi: 10.1002/art.39437
Fuschiotti P, Larregina AT, Ho J, et al. Interleukin-13-producing CD8+ T cells mediate dermal fibrosis in patients with systemic sclerosis. Arthritis & Rheumatology 2013; 65(1): 236–246. doi: 10.1002/art.37706
Pincha N, Hajam EY, Badarinath K, et al. PAI1 mediates fibroblast-mast cell interactions in skin fibrosis. The Journal of Clinical Investigation 2018; 128(5): 1807–1819. doi: 10.1172/JCI99088
Altorok N, Tsou PS, Coit P, et al. Genome-wide DNA methylation analysis in dermal fibroblasts from patients with diffuse and limited systemic sclerosis reveals common and subset-specific DNA methylation aberrancies. Annals of the Rheumatic Diseases 2015; 74(8): 1612–1620.
Huber LC, Distler JH, Moritz F, et al. Trichostatin A prevents the accumulation of extracellular matrix in a mouse model of bleomycin-induced skin fibrosis. Arthritis & Rheumatology 2007; 56(8): 2755–2764. doi: 10.1002/art.22759
Wei J, Ghosh AK, Chu H, et al. The histone deacetylase sirtuin 1 is reduced in systemic sclerosis and abrogates fibrotic responses by targeting transforming growth factor β signaling. Arthritis & Rheumatology 2015; 67(5): 1323–1334. doi: 10.1002/art.39061
He Y, Tsou PS, Khanna D, et al. Methyl-CpG-binding protein 2 mediates antifibrotic effects in scleroderma fibroblasts. Annals of the Rheumatic Diseases 2018; 77(8): 1208–1218.
Bergmann C, Brandt A, Merlevede B, et al. The histone demethylase Jumonji domain-containing protein 3 (JMJD3) regulates fibroblast activation in systemic sclerosis. Annals of the Rheumatic Diseases 2018; 77(1): 150–158.
Krämer M, Dees C, Huang J, et al. Inhibition of H3K27 histone trimethylation activates fibroblasts and induces fibrosis. Annals of the Rheumatic Diseases 2013; 72(4): 614–620.
Maurer B, Stanczyk J, Jüngel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis & Rheumatology 2010; 62(6): 1733–1743. doi: 10.1002/art.27443
Jinnin M. Recent progress in studies of miRNA and skin diseases. The Journal of Dermatology 2015; 42(6): 551–558. doi: 10.1111/1346-8138.12904
Sing T, Jinnin M, Yamane K, et al. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology 2012; 51(9): 1550–1556. doi: 10.1093/rheumatology/kes120