Research progress in immunological mechanisms of Cryptococcus

Ying Song, Yufang Qiu, Weiyou Liu, Xiaoliang Yuan

Article ID: 1370
Vol 5, Issue 2.1, 2021

VIEWS - 42 (Abstract) 32 (PDF)

Abstract


Whether infection of Cryptococcus causes disease in host or not depends on the virulence of the pathogen and the immune defense ability of the host. Cryptococcus neoformans (C. neoformans) mainly causes opportunistic infections in the immunocompromised or immunodeficient patients. In contrast, Cryptococcus gattii (C. gattii) mainly attacks the immunocompetent individuals. On the one hand, the host immune cells can eliminate the invasive Cryptococcus through a complex immune mechanism; on the other hand, Cryptococcus can evade the clearance of host immune cells by adopting various strategies (immune escape). This review mainly focuses on the pathogenic mechanism of Cryptococcus, and the host’s immune defense mechanism against cryptococcal infection.


Keywords


Cryptococcus; Immune Mechanism; Macrophage; Dendritic Cells

Full Text:

PDF


References


1. Byrnes EJ, Marr KA. The outbreak of Cryptococcus gattii in Western North America: Epidemiology and clinical issues. Current Infectious Disease Reports 2011; 13(3): 256–261.

2. Akins PT, Jian B. The frozen brain state of Cryptococcus gattii: A globe-trotting, tropical, neurotropic fungus. Neurocritical Care 2019; 30(2): 272–279.

3. Park BJ, Wannemuehler KA, Marston BJ, et al. Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 2009; 23(4): 525–530.

4. Springer DJ, Billmyre RB, Filler EE, et al. Cryptococcus gattii VGIII isolates causing infections in HIV/AIDS patients in Southern California: Identification of the local environmental source as arboreal. PLOS Pathogens 2014; 10(8): e1004285.

5. Kwon-Chung KJ, Fraser JA, Doering TL, et al. Cryptococcus neoformans and Cryptococcus gattii, the etiologic agents of Cryptococcosis. Cold Spring Harbor Perspectives in Medicine 2014; 4(7): a019760.

6. Galanis E, Macdougall L, Kidd S, et al. Epidemiology of Cryptococcus gattii, British Columbia, Canada, 1999–2007. Emerging Infectious Diseases 2010; 16(2): 251–257.

7. Ngamskulrungroj P, Chang Y, Sionov E, et al. The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. mBio 2012; 3(3): e00103–12.

8. Li P, Tan H, Hu C, et al. Purification of capsular polysaccharide GXM from Cryptococcus neoformans and its role in regulating MR expression in macrophages. Chinese Journal of Mycology 2012; (5): 265–268.

9. O’meara TR, Alspaugh JA. The Cryptococcus neoformans capsule: A sword and a shield. Clinical Microbiology Reviews 2012; 25(3): 387–408.

10. Denham ST, Verma S, Reynolds RC, et al. Regulated release of Cryptococcal polysaccharide drives virulence and suppresses immune infiltration into the central nervous system. Infectious Immunity 2018; 86(3): e00662–17.

11. Zhou J, Mao W. Research progress on the interaction between phagocytic effector cells and Cryptococcus neoformans (in Chinese). Chinese Journal of Mycology 2017; (4): 244–247, 256.

12. Garelnabi M, Taylor-Smith LM, Bielska E, et al. Quantifying donor-to-donor variation in macrophage responses to the human fungal pathogen Cryptococcus neoformans. PLoS One 2018; 13(3): e194615.

13. Smith LM, Dixon EF, May RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation. Cell Microbiology 2015; 17(5): 702–713.

14. Leopold Wager CM, Hole CR, Wozniak KL, et al. Cryptococcus and Phagocytes: Complex interactions that influence disease outcome. Frontiers in Microbiology 2016; 7: 105.

15. Lim J, Coates CJ, Seoane PI, et al. Characterizing the mechanisms of nonopsonic uptake of Cryptococci by Macrophages. Journal of Immunology 2018; 200(10): 3539–3546.

16. Davis MJ, Tsang TM, Qiu Y, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio 2013; 4(3): e00264–13.

17. Hole CR, Bui H, Wormley FL, et al. Mechanisms of dendritic cell lysosomal killing of Cryptococcus. Scientific Reports 2012; 2: 739.

18. Wozniak KL, Vyas JM, Levitz SM. In vivo role of dendritic cells in a murine model of pulmonary Cryptococcosis. Infection and Immunity 2006; 74(7): 3817–3824.

19. Wozniak KL. Interactions of Cryptococcus with dendritic cells. Journal of Fungi 2018; 4(1): 36.

20. Siegemund S, Alber G. Cryptococcus neoformans activates bone marrow-derived conventional dendritic cells rather than plasmacytoid dendritic cells and downregulates macrophages. Fems Immunology & Medical Microbiology 2008; 52(3): 417.

21. Hole CR, Leopold Wager CM, Mendiola AS, et al. Antifungal activity of plasmacytoid dendritic cells against Cryptococcus neoformans In vitro requires expression of dectin-3 (CLEC4D) and reactive oxygen species. Infection and Immunity 2016; 84(9): 2493–2504.

22. Osterholzer JJ, Chen G, Olszewski M, et al. Accumulation of CD11b (+) lung dendritic cells in response to fungal infection results from the CCR2-mediated recruitment and differentiation of Ly-6C (high) monocytes. Journal of Immunology (Baltimore, Md.: 1950) 2009; 183(12): 8044–8053.

23. Wiesner DL, Specht CA, Lee CK, et al. Chitin recognition via chitotriosidase promotes pathologic type-2 helper T Cell responses to Cryptococcal infection. PLoS Pathogens 2015; 11(3): e1004701.

24. Xu J, Flaczyk A, Neal LM, et al. Exploitation of scavenger receptor, macrophage receptor with collagenous structure, by Cryptococcus neoformans promotes alternative activation of pulmonary lymph node CD11b (+) conventional dendritic cells and non-protective Th2 bias. Frontiers in Immunology 2017; 8: 1231.

25. Rajasingham R, Smith RM, Park BJ, et al. Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infectious Disease 2017; 17(8): 873–881.

26. Ma H, Li Y, Wei Y, et al. CD4+ FoxP3+ regulatory T cells inhibit the immune effects of Th2 cells in lung fungal infection. Chinese Journal of Gerontology 2018; (2): 265–268.

27. Van De Veerdonk FL, Netea MG. T-cell subsets and antifungal host defenses. Current Fungal Infection Reports 2010; 4(4): 238–243.

28. Rohatgi S, Pirofski LA. Host immunity to Cryptococcus neoformans. Future Microbiology 2015; 10(4): 565–581.

29. Szymczak WA, Davis MJ, Lundy SK, et al. X-linked immunodeficient mice exhibit enhanced susceptibility to Cryptococcus neoformans infection. mBio 2013; 4(4): e00265–13.

30. Yauch LE, Mansour MK, Shoham S, et al. Involvement of CD14, toll-like receptors 2 and 4, and MyD88 in the host response to the fungal pathogen cryptococcus neoformans in vivo. Infectious Immunity 2004; 72: 5373–5382.

31. Clemons KV, Brummer E, Stevens DA. Cytokine treatment of central nervous system infection: Efficacy of interleukin-12 alone and synergy with conventional antifungal therapy in experimental Cryptococcosis. Antimicrobial agents and chemotherapy 1994; 38(3): 460.

32. Pappas PG, Bustamante B, Ticona E, et al. Recombinant interferon-gamma 1b as adjunctive therapy for AIDS-related acute Cryptococcal meningitis. Journal of Infectious Disease 2004; 189 (12): 2185–2191.




DOI: https://doi.org/10.24294/ti.v5.i2.1.1370

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Ying Song, Yufang Qiu, Weiyou Liu, Xiaoliang Yuan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.