Abstract
In recent years of immunology, the understanding of innate immunity has deepened, and the concept of innate immunity has been proposed even in the area of acquired immune subjects. The conventional immunosuppressive treatments have mainly controlled the step of acquired immunity. However, the involvement of innate immunity was clarified for hydroxychloroquine (HCQ), which has been confirmed to be very effective for cutaneous lupus erythematosus (CLE). This review introduces the mechanism of development of CLE from the viewpoint of autoantibodies, cytokines, and innate immunity. Furthermore, the mechanism of HCQ is introduced and discussed.
Keywords
Hydroxychloroquine; Innate Immunity; Cutaneous Lupus Erythematosus; Systemic Lupus Erythematosus; Treatment; COVID-19
References
Furukawa F. Practical therapeutics for skin lesions of Japanese patients with discoid lupus erythematosus. Expert Opinion on Orphan Drugs 2014; 2(5): 477–482. doi: 10.1517/21678707.2014.901166
Ikeda T, Kanazawa N, Furukawa F. Hydroxychloroquine administration for Japanese lupus erythematosus in Wakayama: A pilot study. The Journal of Dermatology 2011; 39(6): 531–535. doi: 10.1111/j.1346-8138.2011.01448.x
Yokogawa N, Tanikawa A, Amagai M, et al. Response to hydroxychloroquine in Japanese patients with lupus-related skin disease using the cutaneous lupus erythematosus disease area and severity index (CLASI). Modern Rheumatology 2013; 23(2): 318–322. doi: 10.1007/s10165-012-0656-3
Furukawa F, Tanaka H, Sekita K, et al. Dermatopathological studies on skin lesions of MRL mice. Archives of Dermatological Research 1984; 276: 186–194. doi: 10.1007/BF00414018
Shimomatsu T, Kanazawa N, Mikita N, et al. The effect of hydroxychloroquine on lupus erythematosus-like skin lesions in MRL/lpr mice. Modern Rheumatology 2016; 26(5): 744–748. doi: 10.3109/14397595.2016.1140711
Yokogawa N, Eto H, Tanikawa A, et al. Effects of hydroxychloroquine in patients with cutaneous lupus erythematosus: A multicenter, double‐blind, randomized, parallel‐group trial. Arthritis & Rheumatology 2017; 69(4): 791–799. doi: 10.1002/art.40018
Furukawa F, Eto H, Tanikawa A, et al. Guide to proper use of hydroxychloroquine. The Japanese Journal of Dermatology 2015; 125(11): 2049–2060. doi: 10.14924/dermatol.125.2049
Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020; 30: 269–271. doi: 10.1038/s41422-020-0282-0
Furukawa F, Itoh T, Wakita H, et al. Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clinical & Experimental Immunology 1999; 118(1): 164–170. doi: 10.1046/j.1365-2249.1999.01026.x
Gerl V, Hostmann B, Johnen C, et al. The intracellular 52‐kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor α via tumor necrosis factor receptor I. Arthritis & Rheumatism 2005; 52(2): 531–538. doi: 10.1002/art.20851
Furukawa F, Ikai K, Matsuyoshi N, et al. Relationship between heat shock protein induction and the binding of antibodies to the extractable nuclear antigens on cultured human keratinocytes. Journal of Investigative Dermatology 1993; 101(2): 191–195. doi: 10.1111/1523-1747.ep12363785
Mikita N, Ikeda T, Ishiguro M, et al. Recent advances in cytokines in cutaneous and systemic lupus erythematosus. The Journal of Dermatology 2011; 38(9): 839–349. doi: 10.1111/j.1346-8138.2011.01237.x.
Méndez-Flores S, Hernández-Molina G, Azamar-Llamas D, et al. Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine 2019; 119: 95–112. doi: 10.1016/j.cyto.2019.03.010
Furukawa F, Kashihara-Sawami M, Lyons MB, et al. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): Implications for the pathogenesis of photosensitive cutaneous lupus. Journal of Invest igative Dermatology 1990; 94(1): 77–85. doi: 10.1111/1523-1747.ep12873930
Elman SA, Joyce C, Braudis K, et al. Creation and validation of classification criteria for discoid lupus erythematosus. JAMA Dermatology 2020; 156(8): 901–906. doi: 10.1001/jamadermatol.2020.1698
Elman SA, Joyce C, Nyberg F, et al. Development of classification criteria for discoid lupus erythematosus: Results of a Delphi exercise. Journal of the American Academy of Dermatology 2017; 77(2): 261–267. doi: 10.1016/j.jaad.2017.02.030
Furukawa F, Kanazawa N. Autoimmunity versus autoinflammation: From the 2nd JSID-Asia-Oceania-Forum, Wakayama, Japan, 5th December, 2010. Journal of Dermatological Science 2011; 63(2): 132–137. doi:10.1016/j.jdermsci.2011.05.001
Wenzel J. Cutaneous lupus erythematosus: New insights into pathogenesis and therapeutic strategies. Nature Reviews Rheumatology 2019; 15: 519–532. doi: 10.1038/s41584-019-0272-0
Sim JH, Ambler WG, Sollohub IF, et al. Immune cell-stromal circuitry in lupus photosensitivity. Journal of Immunology 2021; 206(2): 302–309. doi: 10.4049/jimmunol.2000905
Kanazawa N, Furukawa F. Autoinflammatory syndromes with a dermatological perspective. The Journal of Dermatology 2007; 34(9): 601–618. doi: 10.1111/j.1346-8138.2007.00342.x
Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subu-nit beta type 8 (PSMB8) mutation causes the auto-inflammatory disorder, Nakajo-Nishimura syndro- me. Proceedings of the National Academy of Sci-ence of the United States of America 2011; 108(36): 14914–14919. doi: 10.1073/pnas.1106015108
Inaba Y, Kanazawa N, Kunimoto K, et al. Antinu-clear antibodies in Nakajo-Nishimura syndrome. A
bridge with research on refractory autoimmune dis-eases. Trends in Immunotherapy 2018; 2(1): 1–2. doi: 10.24294/ti.v2.i3.1078
Furukawa F. Hydroxychloroquine in lupus erythe-matosus, a new horizon of the old drug. Trends in Immunotherapy 2017; 1: 99–100. doi: 10.24294/ti. v1.i3.127
Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews, Immunol-ogy 2009; 9(8): 535–542. doi: 10.1038/nri2587
Yamada M, Usami M, Otani K, et al. Nationwide product registry for hydroxychloroquine in Japa-nese patients with cutaneous and systemic lupus er-ythematosus (in Japanese). Therapeutic Research 2020; 41(4): 297–319.
Sharma AN, Mesinkovska NA, Paravar T. Charac-terizing the adverse dermatologic effects of hy-droxychloroquine: A systematic review. Journal of the American Academy Dermatology 2020; 83(2): 563–578. doi: 10.1016/j.jaad.2020.04.024.
Matsuda T, Ly NTM, Kambe N, et al. Early cuta-neous eruptions after oral hydroxychloroquine in a lupus erythematosus patient: A case report and re-view of the published work. The Journal of Derma-tology 2018; 45(3): 344–348. doi: 10.1111/1346-81 38.14156.
Hirakawa Y, Okuno A, Kimura D, et al. Hydroxy- chloroquine enhanced urticarial reaction in a patient with discoid lupus erythematosus. Trends in Immunotherapy 2017; 1: 121–123. doi: 10.24294/ti. v1.i3.125
Petri M, Elkhalifa M, Li J, et al. Hydroxychloro-quine blood levels predict hydroxychloroquine ret-inopathy. Arthritis & Rheumatology 2020; 72(3): 448–453. doi: 10.1002/art.41121
Yokogawa N, Ohno-Tanaka A, Hashiguchi M, et al. Early onset hydroxychloroquine retinopathy and a possible relationship with blood levels: Comment on the article by Petri et al. Arthritis & Rheumatol-ogy 2020; 73(2): 358–359. doi: 10.1002/art.41497.
Lenfant T, Salah S, Leroux G, et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus: A case-control study with hydroxy- chloroquine blood-level analysis. Rheumatology (Oxford) 2020; 59(12): 3807–3816. doi: 10.1093/rh eumatology/keaa157.
Ozawa H, Ueno S, Ohno-Tanaka A. Ocular findings in Japanese patients with hydroxychloroquine reti-nopathy developing within 3 years of treatment. Japanese Journal of Ophthalmology 2021; 65: 472–481. doi: 10.1007/s10384-021-00841-9
Yokogawa N. Launch of hydroxychloroquine-his- tory in Japan (in Japanese). Visual Dermatology 2017; 16: 106–110.
Ikeda T. Clinical characteristics of hydroxychloro-quine effective skin lesion (in Japanese). Visual Dermatology 2017; 16: 112–117.
Fernandez AP. Updated recommendations on the use of hydroxychloroquine in dermatologic practice. Journal of the American Academy of Dermatology 2017; 76(6): 1176–1182. doi: 10.1016/j.jaad.2017. 01.012
Yoshida M, Minowa K, Amano H, et al. Combining maintenance therapy with hydroxychloroquine in-creases LLDAS achievement rates in individuals with stable systemic lupus erythematosus. Lupus 2021. doi: 10.1177/09612033211014272
Yan D, Borucki R, Sontheimer RD, et al. Candidate drug replacements for quinacrine in cutaneous lupus erythematosus. Lupus Science & Medicine 2020; 7 (1). doi: 10.1136/lupus-2020-000430
Matyskiela ME, Zhang W, Man HW, et al. A cere-blon modulator (CC-220) with improved degrada-tion of Ikaros and Aiolos. Journal of Medicinal Ch- emistry 2018; 61(2): 535–542. doi: 10.1021/acs.jme dchem.6b01921
Chen C, Pan K, Wu B, et al. Safety of hydroxy- chloroquine in COVID-19 and other diseases: A systematic review and meta-analysis of 53 randomized trials. European Journal of Clinical Pharmacology 2021; 77: 13–24. doi: 10.1007/s00228-020-0 2962-5