Hydroxychloroquine for the treatment of cutaneous lupus erythematosus

Fukumi Furukawa

Article ID: 1269
Vol 5, Issue 1, 2021, Article identifier:7-13

VIEWS - 176 (Abstract) 70 (PDF)

Abstract


In recent years of immunology, the understanding of innate immunity has deepened, and the concept of innate immunity has been proposed even in the area of acquired immune subjects. The conventional immunosuppressive treatments have mainly controlled the step of acquired immunity. However, the involvement of innate immunity was clarified for hydroxychloroquine (HCQ), which has been confirmed to be very effective for cutaneous lupus erythematosus (CLE). This review introduces the mechanism of development of CLE from the viewpoint of autoantibodies, cytokines, and innate immunity. Furthermore, the mechanism of HCQ is introduced and discussed.


Keywords


Hydroxychloroquine; Innate Immunity; Cutaneous Lupus Erythematosus; Systemic Lupus Erythematosus; Treatment; COVID-19

Full Text:

PDF

References


Furukawa F. Practical therapeutics for skin lesions of Japanese patients with discoid lupus erythematosus. Expert Opinion on Orphan Drugs 2014; 2(5): 477–482. doi: 10.1517/21678707.2014.901166

Ikeda T, Kanazawa N, Furukawa F. Hydroxychloroquine administration for Japanese lupus erythematosus in Wakayama: A pilot study. The Journal of Dermatology 2011; 39(6): 531–535. doi: 10.1111/j.1346-8138.2011.01448.x

Yokogawa N, Tanikawa A, Amagai M, et al. Response to hydroxychloroquine in Japanese patients with lupus-related skin disease using the cutaneous lupus erythematosus disease area and severity index (CLASI). Modern Rheumatology 2013; 23(2): 318–322. doi: 10.1007/s10165-012-0656-3

Furukawa F, Tanaka H, Sekita K, et al. Dermatopathological studies on skin lesions of MRL mice. Archives of Dermatological Research 1984; 276: 186–194. doi: 10.1007/BF00414018

Shimomatsu T, Kanazawa N, Mikita N, et al. The effect of hydroxychloroquine on lupus erythematosus-like skin lesions in MRL/lpr mice. Modern Rheumatology 2016; 26(5): 744–748. doi: 10.3109/14397595.2016.1140711

Yokogawa N, Eto H, Tanikawa A, et al. Effects of hydroxychloroquine in patients with cutaneous lupus erythematosus: A multicenter, double‐blind, randomized, parallel‐group trial. Arthritis & Rheumatology 2017; 69(4): 791–799. doi: 10.1002/art.40018

Furukawa F, Eto H, Tanikawa A, et al. Guide to proper use of hydroxychloroquine. The Japanese Journal of Dermatology 2015; 125(11): 2049–2060. doi: 10.14924/dermatol.125.2049

Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Research 2020; 30: 269–271. doi: 10.1038/s41422-020-0282-0

Furukawa F, Itoh T, Wakita H, et al. Keratinocytes from patients with lupus erythematosus show enhanced cytotoxicity to ultraviolet radiation and to antibody-mediated cytotoxicity. Clinical & Experimental Immunology 1999; 118(1): 164–170. doi: 10.1046/j.1365-2249.1999.01026.x

Gerl V, Hostmann B, Johnen C, et al. The intracellular 52‐kd Ro/SSA autoantigen in keratinocytes is up-regulated by tumor necrosis factor α via tumor necrosis factor receptor I. Arthritis & Rheumatism 2005; 52(2): 531–538. doi: 10.1002/art.20851

Furukawa F, Ikai K, Matsuyoshi N, et al. Relationship between heat shock protein induction and the binding of antibodies to the extractable nuclear antigens on cultured human keratinocytes. Journal of Investigative Dermatology 1993; 101(2): 191–195. doi: 10.1111/1523-1747.ep12363785

Mikita N, Ikeda T, Ishiguro M, et al. Recent advances in cytokines in cutaneous and systemic lupus erythematosus. The Journal of Dermatology 2011; 38(9): 839–349. doi: 10.1111/j.1346-8138.2011.01237.x.

Méndez-Flores S, Hernández-Molina G, Azamar-Llamas D, et al. Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine 2019; 119: 95–112. doi: 10.1016/j.cyto.2019.03.010

Furukawa F, Kashihara-Sawami M, Lyons MB, et al. Binding of antibodies to the extractable nuclear antigens SS-A/Ro and SS-B/La is induced on the surface of human keratinocytes by ultraviolet light (UVL): Implications for the pathogenesis of photosensitive cutaneous lupus. Journal of Invest igative Dermatology 1990; 94(1): 77–85. doi: 10.1111/1523-1747.ep12873930

Elman SA, Joyce C, Braudis K, et al. Creation and validation of classification criteria for discoid lupus erythematosus. JAMA Dermatology 2020; 156(8): 901–906. doi: 10.1001/jamadermatol.2020.1698

Elman SA, Joyce C, Nyberg F, et al. Development of classification criteria for discoid lupus erythematosus: Results of a Delphi exercise. Journal of the American Academy of Dermatology 2017; 77(2): 261–267. doi: 10.1016/j.jaad.2017.02.030

Furukawa F, Kanazawa N. Autoimmunity versus autoinflammation: From the 2nd JSID-Asia-Oceania-Forum, Wakayama, Japan, 5th December, 2010. Journal of Dermatological Science 2011; 63(2): 132–137. doi:10.1016/j.jdermsci.2011.05.001

Wenzel J. Cutaneous lupus erythematosus: New insights into pathogenesis and therapeutic strategies. Nature Reviews Rheumatology 2019; 15: 519–532. doi: 10.1038/s41584-019-0272-0

Sim JH, Ambler WG, Sollohub IF, et al. Immune cell-stromal circuitry in lupus photosensitivity. Journal of Immunology 2021; 206(2): 302–309. doi: 10.4049/jimmunol.2000905

Kanazawa N, Furukawa F. Autoinflammatory syndromes with a dermatological perspective. The Journal of Dermatology 2007; 34(9): 601–618. doi: 10.1111/j.1346-8138.2007.00342.x

Arima K, Kinoshita A, Mishima H, et al. Proteasome assembly defect due to a proteasome subu-nit beta type 8 (PSMB8) mutation causes the auto-inflammatory disorder, Nakajo-Nishimura syndro- me. Proceedings of the National Academy of Sci-ence of the United States of America 2011; 108(36): 14914–14919. doi: 10.1073/pnas.1106015108

Inaba Y, Kanazawa N, Kunimoto K, et al. Antinu-clear antibodies in Nakajo-Nishimura syndrome. A

bridge with research on refractory autoimmune dis-eases. Trends in Immunotherapy 2018; 2(1): 1–2. doi: 10.24294/ti.v2.i3.1078

Furukawa F. Hydroxychloroquine in lupus erythe-matosus, a new horizon of the old drug. Trends in Immunotherapy 2017; 1: 99–100. doi: 10.24294/ti. v1.i3.127

Barton GM, Kagan JC. A cell biological view of Toll-like receptor function: regulation through compartmentalization. Nature Reviews, Immunol-ogy 2009; 9(8): 535–542. doi: 10.1038/nri2587

Yamada M, Usami M, Otani K, et al. Nationwide product registry for hydroxychloroquine in Japa-nese patients with cutaneous and systemic lupus er-ythematosus (in Japanese). Therapeutic Research 2020; 41(4): 297–319.

Sharma AN, Mesinkovska NA, Paravar T. Charac-terizing the adverse dermatologic effects of hy-droxychloroquine: A systematic review. Journal of the American Academy Dermatology 2020; 83(2): 563–578. doi: 10.1016/j.jaad.2020.04.024.

Matsuda T, Ly NTM, Kambe N, et al. Early cuta-neous eruptions after oral hydroxychloroquine in a lupus erythematosus patient: A case report and re-view of the published work. The Journal of Derma-tology 2018; 45(3): 344–348. doi: 10.1111/1346-81 38.14156.

Hirakawa Y, Okuno A, Kimura D, et al. Hydroxy- chloroquine enhanced urticarial reaction in a patient with discoid lupus erythematosus. Trends in Immunotherapy 2017; 1: 121–123. doi: 10.24294/ti. v1.i3.125

Petri M, Elkhalifa M, Li J, et al. Hydroxychloro-quine blood levels predict hydroxychloroquine ret-inopathy. Arthritis & Rheumatology 2020; 72(3): 448–453. doi: 10.1002/art.41121

Yokogawa N, Ohno-Tanaka A, Hashiguchi M, et al. Early onset hydroxychloroquine retinopathy and a possible relationship with blood levels: Comment on the article by Petri et al. Arthritis & Rheumatol-ogy 2020; 73(2): 358–359. doi: 10.1002/art.41497.

Lenfant T, Salah S, Leroux G, et al. Risk factors for hydroxychloroquine retinopathy in systemic lupus erythematosus: A case-control study with hydroxy- chloroquine blood-level analysis. Rheumatology (Oxford) 2020; 59(12): 3807–3816. doi: 10.1093/rh eumatology/keaa157.

Ozawa H, Ueno S, Ohno-Tanaka A. Ocular findings in Japanese patients with hydroxychloroquine reti-nopathy developing within 3 years of treatment. Japanese Journal of Ophthalmology 2021; 65: 472–481. doi: 10.1007/s10384-021-00841-9

Yokogawa N. Launch of hydroxychloroquine-his- tory in Japan (in Japanese). Visual Dermatology 2017; 16: 106–110.

Ikeda T. Clinical characteristics of hydroxychloro-quine effective skin lesion (in Japanese). Visual Dermatology 2017; 16: 112–117.

Fernandez AP. Updated recommendations on the use of hydroxychloroquine in dermatologic practice. Journal of the American Academy of Dermatology 2017; 76(6): 1176–1182. doi: 10.1016/j.jaad.2017. 01.012

Yoshida M, Minowa K, Amano H, et al. Combining maintenance therapy with hydroxychloroquine in-creases LLDAS achievement rates in individuals with stable systemic lupus erythematosus. Lupus 2021. doi: 10.1177/09612033211014272

Yan D, Borucki R, Sontheimer RD, et al. Candidate drug replacements for quinacrine in cutaneous lupus erythematosus. Lupus Science & Medicine 2020; 7 (1). doi: 10.1136/lupus-2020-000430

Matyskiela ME, Zhang W, Man HW, et al. A cere-blon modulator (CC-220) with improved degrada-tion of Ikaros and Aiolos. Journal of Medicinal Ch- emistry 2018; 61(2): 535–542. doi: 10.1021/acs.jme dchem.6b01921

Chen C, Pan K, Wu B, et al. Safety of hydroxy- chloroquine in COVID-19 and other diseases: A systematic review and meta-analysis of 53 randomized trials. European Journal of Clinical Pharmacology 2021; 77: 13–24. doi: 10.1007/s00228-020-0 2962-5




DOI: http://dx.doi.org/10.24294/ti.v5.i1.1269

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Fukumi Furukawa

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.