Contribution of earth bricks reinforced with African locust bean pod powder (Parkia biglobosa) to sustainable construction in Togo: Characterization, formulation, mechanical performance, and recommendations

Magnouréwa Josiane Tossim, Sinko Banakinao, Sekdja Prosper Samon, Marie Anita Temgoua Zemo, Célestin Adeito Mavunda, Cyprien Coffi Aholou, Yawovi Mawuénya Xolali Dany Ayité

Article ID: 9780
Vol 8, Issue 15, 2024

VIEWS - 1397 (Abstract)

Abstract


In response to the challenges of climate change, this study explores the use of moringa pod powder as reinforcement in the manufacture of compressed earth bricks to promote sustainable building materials. The objective is to evaluate the impact of African locust bean pod powder on the mechanical properties of the bricks. Two types of soils from Togo were characterized according to geotechnical standards. Mixtures containing 8% African locust bean pod powder at various particle sizes (0.08 mm, 2 mm, and between 2 and 5 mm) were formulated and tested for compression and tensile strength. The results show that the addition of African locust bean pod reduces the mechanical strength of the bricks compared to the control sample without pods, with strengths ranging from 0.697 to 0.767 MPa, compared to 0.967 to 1.060 MPa for the control. However, the best performances for the mixtures were obtained with a fineness of less than 2 mm. This decrease in performance is attributed to several factors, including inadequate water content and suboptimal preparation and compaction methods. Optimizing formulation parameters is necessary to maximize the effectiveness of African locust bean pods. This work highlights the valorization of agro-industrial waste, paving the way for a better understanding of bio-based materials and future research for sustainable construction.


Keywords


African locust bean pods; grinding fineness; mechanical strength; bio-based materials; compressed earth bricks

Full Text:

PDF


References

  1. AFNOR EDITIONS. (1993, mars). NF P 94-051. https://www.boutique.afnor.org/Store/Preview/DisplayExtract?ProductID=11080&VersionID=6
  2. Aguwa, J. I., Alhaji, B., Jiya, A., Kareem, D. H. (2016). Effectiveness of locust bean pod solution (LBPS) in the production of sandcrete blocks for buildings. Nigerian Journal of Technological Development, 13(1), Article 1. https://doi.org/10.4314/njtd.v13i1.3
  3. Ahodegnon, D. K., Gnansounou, M., Bogninou, R. G. S., et al. (2018). Biochemical profile and antioxidant activity of Parkia biglobosa and Tamarindus indica fruits acclimated in Benin. International journal of advanced research, 6(11), 702‑711. https://doi.org/10.21474/IJAR01/8050
  4. Awal, A. S. M. A., Mariyana, A. A. K., Hossain, M. Z. (2021). Some Aspects of Physical and Mechanical Properties of Sawdust Concrete. GEOMATE Journal, 10(21), Article 21.
  5. Ayite, Y., Kodjo, K. M., Bedja, K. (2011). Determinatin dúne application des betons de balles de riz dans le batiment au Togo. Journal de La Recherche Scientifique de l’Université de Lomé, 13(2), Article 2.
  6. Aykut, S. C., Maertens, L. (2021). The climatization of global politics: Introduction to the special issue. International Politics, 58(4), 501‑518. https://doi.org/10.1057/s41311-021-00325-0
  7. Azokpota, P., Hounhouigan, D. J., Nago, M. C. (2006). Modifications microbiologiques et chimiques au cours de la fermentation du caroube africain (Parkia biglobosa) pour produire de l’afitin , de l’iru et du sonru , trois condiments traditionnels produits au Bénin. International Journal of Food Microbiology, 107(3), 304‑309. https://doi.org/10.1016/j.ijfoodmicro.2005.10.026
  8. Balogun, W. G., Adebayo, I. A., Yusuf, U., Seeni, A. (2018). A review of the phytochemistry and medicinal activities of the popular African food additive: Parkia biglobosa seed. Oriental Pharmacy and Experimental Medicine, 18(4), 271‑279. https://doi.org/10.1007/s13596-018-0337-7
  9. Banakinao, S. (2016). Caractérisation et modélisation du comportement mécanique des microstructures hétérogènes : Cas du matériau composite (terre-cosse de néré) et ses applications dans les BTP (Bâtiments et Travaux Publics). Université de Lomé.
  10. Banakinao, S., Tiem, S., Attipou, K., et al. (2017). Use of the Nere Pod (Parkia Biglobosa) for the Improvement of Mechanical Properties of Soils. American Journal of Applied Sciences, 14(2), 302‑308. https://doi.org/10.3844/ajassp.2017.302.308
  11. Banakinao, S., Tiem, S., Lolo, K., et al. (2016). Dataset of the use of tannin of néré (parkia-biglobosa) as a solution for the sustainability of the soil constructions in West Africa. Data in Brief, 8, 474‑483. https://doi.org/10.1016/j.dib.2016.05.072
  12. Batool, F., Islam, K., Cakiroglu, C., Shahriar, A. (2021). Effectiveness of wood waste sawdust to produce medium- to low-strength concrete materials. Journal of Building Engineering, 44, 103237. https://doi.org/10.1016/j.jobe.2021.103237
  13. Bazus, A., Rigal, L., Université Paul Sabatier. (1991). Raffinage des agroressources : Extraction et caractérisations des glucuronoxylanes des coques de tournesol.
  14. Benyahia, A., Merrouche, A., Rokbi, M., Kouadri, Z. (2013). Étude de l’effet du traitement alcalin des fibres végétales sur le comportement mécanique du composite Polyester insaturée-Fibre Alfa. In A. F. de Mécanique (Éd.), CFM 2013—21ème Congrès Français de Mécanique. AFM, Maison de la Mécanique, 39/41 rue Louis Blanc - 92400 Courbevoie. https://hal.science/hal-03439860
  15. Bledzki, A. K., Gassan, J. (1999). Composites reinforced with cellulose based fibres. Progress in Polymer Science, 24(2), 221‑274. https://doi.org/10.1016/S0079-6700(98)00018-5
  16. Bonifacio, A. L., Archbold, P. (2024). Impact of Oat Husk Extracts on Mid-Stage Cement Hydration and the Mechanical Strength of Mortar. Construction Materials, 4(1), Article 1. https://doi.org/10.3390/constrmater4010006
  17. Bothon, F. T. D., Atindéhou, M. M., Koudoro, Y. A., et al. (2023). Parkia biglobosa Fruit Husks: Phytochemistry, Antibacterial, and Free Radical Scavenging Activities. American Journal of Plant Sciences, 14(2), Article 2. https://doi.org/10.4236/ajps.2023.142012
  18. Camargo, M. M., Adefrs Taye, E., Roether, J. A., et al. (2020). A Review on Natural Fiber-Reinforced Geopolymer and Cement-Based Composites. Materials, 13(20), Article 20. https://doi.org/10.3390/ma13204603
  19. Cavalieri, F., Bellotti, D., Caruso, M., Nascimbene, R. (2023). Comparative evaluation of seismic performance and environmental impact of traditional and dissipation-based retrofitting solutions for precast structures. Journal of Building Engineering, 79, 107918. https://doi.org/10.1016/j.jobe.2023.107918
  20. Cavalliere, C., Habert, G., Dell’Osso, G. R., Hollberg, A. (2019). Continuous BIM-based assessment of embodied environmental impacts throughout the design process. Journal of Cleaner Production, 211, 941‑952. https://doi.org/10.1016/j.jclepro.2018.11.247
  21. Chamasemani, N. F., Kelishadi, M., Mostafaei, H., et al. (2024). Environmental Impacts of Reinforced Concrete Buildings : Comparing Common and Sustainable Materials: A Case Study. Construction Materials, 4(1), Article 1. https://doi.org/10.3390/constrmater4010001
  22. Chong, X., Hou, L., Xie, L., Yang, C. (2021). Seismic performance of a new energy dissipative cladding panel connection system for application in precast concrete frame structure. Journal of Building Engineering, 44, 102671. https://doi.org/10.1016/j.jobe.2021.102671
  23. Compaoré, C. S., Tapsoba, F. W., Parkouda, C., et al. (2020). Development of starter cultures carrier for the production of high quality soumbala, a food condiment based on Parkia biglobosa seeds. African Journal of Biotechnology, 19(11), 820‑828. https://doi.org/10.5897/AJB2020.17244
  24. Dejeant, F., Garnier, P., Joffroy, T. (2021). Matériaux locaux, matériaux d’avenir. CRAterre. https://hal.science/hal-03293589
  25. Divsalar, R. (2011). Building problems in hot climate: Energy efficient building design. LAP LAMBERT Acad. Publ.
  26. Dollente, I. J. R., Valerio, D. N. R., Quiatchon, P. R. J., et al. (2023). Enhancing the Mechanical Properties of Historical Masonry Using Fiber-Reinforced Geopolymers. Polymers, 15(4), Article 4. https://doi.org/10.3390/polym15041017
  27. Drovou, S., Kassegne, K. A., Sanda, K. (2015). Élaboration et caractérisation mécanique et physique des panneaux de particules de sciure de kapokier avec la poudre tanifère de la cosse de gousse de néré. European Scientific Journal, ESJ, 11(6), Article 6. https://eujournal.org/index.php/esj/article/view/5124
  28. Ebekozien, A., Ahmed, M. A. H., Aigbavboa, C., et al. (2024). Appraising the impact of climate change on construction activities : Are the Nigerian practitioners prepared? Journal of Infrastructure, Policy and Development, 8(6), Article 6. https://doi.org/10.24294/jipd.v8i6.3861
  29. Elfaleh, I., Abbassi, F., Habibi, M., et al. (2023). A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials. Results in Engineering, 19, 101271. https://doi.org/10.1016/j.rineng.2023.101271
  30. Environment, U. N. (2010, octobre 16). Rapport annuel 2009 du PNUE | PNUE - Programme des Nations Unies pour l’environnement. https://www.unep.org/resources/annual-report/unep-2009-annual-report
  31. Gan, V. J. L., Deng, M., Tse, K. T., et al. (2018). Holistic BIM framework for sustainable low carbon design of high-rise buildings. Journal of Cleaner Production, 195, 1091‑1104. https://doi.org/10.1016/j.jclepro.2018.05.272
  32. Guo, A., Sun, Z., Feng, H., et al. (2023). State-of-the-art review on the use of lignocellulosic biomass in cementitious materials. Sustainable Structures, 3(1). https://doi.org/10.54113/j.sust.2023.000023
  33. Horowitz, C. A. (2016). Paris Agreement. International Legal Materials, 55(4), 740‑755. https://doi.org/10.1017/S0020782900004253
  34. Jiang, D., Jiang, D., Lv, S., et al. (2021). Effect of modified wheat straw fiber on properties of fiber cement-based composites at high temperatures. Journal of Materials Research and Technology, 14, 2039‑2060. https://doi.org/10.1016/j.jmrt.2021.07.105
  35. Keita, I., Sorgho, B., Dembele, C., et al. (2014). Ageing of clay and clay–tannin geomaterials for building. Construction and Building Materials, 61, 114‑119. https://doi.org/10.1016/j.conbuildmat.2014.03.005
  36. Khiratkar, B., Khade, S., Tripathi, A. (2022). Biogas: Renewable Natural Gas (p. 119‑128). https://doi.org/10.4018/978-1-6684-5269-1.ch007
  37. Koh, C. H. (Alex), Kraniotis, D. (2020). A review of material properties and performance of straw bale as building material. Construction and Building Materials, 259, 120385. https://doi.org/10.1016/j.conbuildmat.2020.120385
  38. Konečný, P., Teslík, J., Hamala, M. (2013). Mechanical and Physical Properties of Straw Bales. Advanced Materials Research, 649, 250‑253. https://doi.org/10.4028/www.scientific.net/AMR.649.250
  39. Kouto, Y. A. (2024). Formulation et caractérisation de béton de terre incorporant des fibres de tiges de maïs. Ecole polytechnique de Lomé-UL.
  40. Lecompte, T. (2024). Matériaux bio-sourcés pour le bâtiment et stockage temporaire de carbone. La construction responsable. https://doi.org/10.51257/a-v2-c8124
  41. Liu, Z., Han, C., Li, Q., et al. (2022). Study on wood chips modification and its application in wood-cement composites. Case Studies in Construction Materials, 17, e01350. https://doi.org/10.1016/j.cscm.2022.e01350
  42. Maglad, A. M., Othuman Mydin, M. A., Dip Datta, S., Tayeh, B. A. (2023). Assessing the mechanical, durability, thermal and microstructural properties of sea shell ash based lightweight foamed concrete. Construction and Building Materials, 402, 133018. https://doi.org/10.1016/j.conbuildmat.2023.133018
  43. Mahdy, M. M., Mahfouz, S. Y., Tawfic, A. F., Ali, M. A. E. M. (2023). Performance of Rice Straw Fibers on Hardened Concrete Properties under Effect of Impact Load and Gamma Radiation. Fibers, 11(5), Article 5. https://doi.org/10.3390/fib11050042
  44. Majeed, S. S. (2024). Formulating Eco-Friendly Foamed Mortar by Incorporating Sawdust Ash as a Partial Cement Replacement. Sustainability, 16(7), Article 7. https://doi.org/10.3390/su16072612
  45. Mastali, M., Dalvand, A. (2016). Use of silica fume and recycled steel fibers in self-compacting concrete (SCC). Construction and Building Materials, 125, 196‑209. https://doi.org/10.1016/j.conbuildmat.2016.08.046
  46. McCabe, J. (2018, avril 29). La résistivité thermique des bottes de paille pour la construction Joseph C. McCabe | ESBA. European Straw Building Association. https://strawbuilding.eu/the-thermal-resistivity-of-straw-bales-for-construction-joseph-c-mccabe/
  47. Nenonene, A. Y., Koba, K., Sanda, K., Rigal, L. (2014). Composition chimique et propriétés adhésives d’extraits d’organes tannifères de quelques plantes du Togo pour l’agglomeration de particules de tige de kénaf (Hibiscus cannabinus L.). 037, 49‑55.
  48. NF P94-093 (Afnor editions). (2014). https://www.boutique.afnor.org/fr-fr/norme/nf-p94093/sols-reconnaissance-et-essais-determination-des-references-de-compactage-du/fa185491/43924
  49. Nina, J. F., Eires, R., Oliveira, D. V. (2023). Earthen Construction: Acceptance among Professionals and Experimental Durability Performance. Construction Materials, 3(2), Article 2. https://doi.org/10.3390/constrmater3020010
  50. Noukpakou, F., Pauporté, E., Pleitinx, R., Wilbaux, Q. (2020). Matériaux locaux de construction et développement durable dans l’Atacora : L’enduit mural dans l’architecture otammari. Congrès International sur le Patrimoine Architectural et Matériaux Locaux de Construction. https://dial.uclouvain.be/pr/boreal/object/boreal:230646
  51. Nouri, M. (2020). Développement d’éléments en biocomposite à base de fibre végétale pour la réhabilitation énergétique des bâtiments. École centrale de Nantes.
  52. Paradis, G. (2009). Akoègninou A., van der Burg W.J., van der Maesen L.J.G. (éditeurs en chef), 2006 – Flore Analytique du Bénin. Backhuys Publishers. XXII. https://www.persee.fr/doc/jobot_1280-8202_2009_num_45_1_1063
  53. Plazonić, I., Barbarić-Mikočević, Ž., Antonović, A. (2016). Chemical Composition of Straw as an Alternative Material to Wood Raw Material in Fibre Isolation. Drvna Industrija, 67(2), 119‑125. https://doi.org/10.5552/drind.2016.1446
  54. Santos, S. F., Teixeira, R. S., Savastano Junior, H. (2017). 3—Interfacial transition zone between lignocellulosic fiber and matrix in cement-based composites. In H. Savastano Junior, J. Fiorelli, & S. F. dos Santos (Éds.), Sustainable and Nonconventional Construction Materials using Inorganic Bonded Fiber Composites (p. 27‑68). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102001-2.00003-6
  55. Sorgho, B., Zerbo, L., Keita, I., et al. (2014). Strength and creep behavior of geomaterials for building with tannin addition. Materials and structures, 47(6), 937‑946. https://doi.org/10.1617/s11527-013-0104-7
  56. Tlaiji, G., Ouldboukhitine, S., Pennec, F., Biwole, P. (2022). Thermal and mechanical behavior of straw-based construction : A review. Construction and Building Materials, 316, 125915. https://doi.org/10.1016/j.conbuildmat.2021.125915
  57. Tleuberdinova, A., Alzhanova, F., Nurlanova, N. (2024). Trap and dilemma of urbanisation : Comparative analysis and conclusions for accelerated urbanisation policies. Journal of Infrastructure, Policy and Development, 8(4), Article 4. https://doi.org/10.24294/jipd.v8i4.2991
  58. Tossim, M. J., Tombar, P. A., Banakinao, S., et al. (2024). Analysis of the Choice of Cement in Construction and Its Impact on Comfort in Togo. Sustainability, 16(17), Article 17. https://doi.org/10.3390/su16177359
  59. Vandenbossche Maréchal, V. (1998). Fractionnement des tiges et capitules de tournesol : Hydrodistillation d’une huile essentielle odorante, extraction et modification chimique de pectines, et mise en forme d’agromatériaux biodégradables [These de doctorat, Toulouse, INPT]. https://theses.fr/1998INPT025C
  60. Verspieren. (2024, janvier 23). Découvrez les avantages des matériaux de construction biosourcés et géosourcés | Verspieren. Verspieren, publié le 2024-01-23. https://www.verspieren.com/fr/entreprise/article/avantages-materiaux-de-construction-biosources-geosources
  61. Vissac, A., Colas, E., Fontaine, L., et al. (2012). Protection et conservation du patrimoine architectural en terre par des stabilisants naturels, d’origine animale et végétale. Interactions argiles/biopolymères (projet PaTerre+). Sciences des matériaux du patrimoine culturel, 135‑139. https://hal.science/hal-04038082
  62. Wesonga, R., Kasedde, H., Kibwami, N., Manga, M. (2023). A Comparative Analysis of Thermal Performance, Annual Energy Use, and Life Cycle Costs of Low-cost Houses Made with Mud Bricks and Earthbag Wall Systems in Sub-Saharan Africa. Energy and Built Environment, 4(1), 13‑24. https://doi.org/10.1016/j.enbenv.2021.06.001


DOI: https://doi.org/10.24294/jipd9780

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Magnouréwa Josiane Tossim, Sinko Banakinao, Sekdja Prosper Samon, Marie Anita Temgoua Zemo, Célestin Adeito Mavunda, Cyprien Coffi Aholou, Yawovi Mawuénya Xolali Dany Ayité

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.