Enhancing secure access through time-stamped password analysis: Implications for infrastructure and policy development

Mohanaad Shakir, Boumedyen Shannaq, Oualid Ali, Basel Bani-Ismail

Article ID: 9441
Vol 8, Issue 15, 2024

VIEWS - 139 (Abstract)

Abstract


The proposed research work encompasses implications for infrastructure particularly the cybersecurity as an essential in soft infrastructure, and policy making particularly on secure access management of infrastructure governance. In this study, we introduce a novel parameter focusing on the timestamp duration of password entry, enhancing the algorithm titled EPSBalgorithmv01 with seven parameters. The proposed parameter incorporates an analysis of the historical time spent by users entering their passwords, employing ARIMA for processing. To assess the efficacy of the updated algorithm, we developed a simulator and employed a multi-experimental approach. The evaluation utilized a test dataset comprising 617 authentic records from 111 individuals within a selected company spanning from 2017 to 2022. Our findings reveal significant advancements in EPSBalgorithmv01 compared to its predecessor namely EPSBalgorithmv00. While EPSBalgorithmv00 struggled with a recognition rate of 28.00% and a precision of 71.171, EPSBalgorithmv01 exhibited a recognition rate of 17% with a precision of 82.882%. Despite a decrease in recognition rate, EPSBalgorithmv01 demonstrates a notable improvement of approximately 14% over EPSBalgorithmv00.


Keywords


cybersecurity; time-stamped password analysis; infrastructure governance; EPSBalgorithmv01; ARIMA

Full Text:

PDF


References


Ahmad, M., Azam, M. M., & Khokhar, F. (2022). Leveraging time series analysis for anomaly detection in cybersecurity. Journal of Cybersecurity Research, 8(3), 156-170.

Ahmed, S., Nielsen, I. E., Tripathi, A., Siddiqui, S., Ramachandran, R. P., & Rasool, G. (2023). Transformers in time-series analysis: A tutorial. Circuits, Systems, and Signal Processing, 42(12), 7433–7466.

Al Alkeem, E., Kim, S.-K., Yeun, C. Y., Zemerly, M. J., Poon, K. F., Gianini, G., & Yoo, P. D. (2019). An Enhanced Electrocardiogram Biometric Authentication System Using Machine Learning. IEEE Access, 7, 123069–123075. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2937357

Al-Hashimi, M., Shakir M. Hammood, M., and Eldow, A. (2007). Address the Challenges of implementing electronic document system in Iraq e-government-Tikrit City as a Case study. Journal of Theoretical & Applied Information Technology, 95(15).

Al-Shamsi, I. R., Shannaq, B., Adebiaye, R., & Owusu, T. (2024). Exploring biometric attendance technology in the Arab academic environment: Insights into faculty loyalty and educational performance in policy initiatives. Journal of Infrastructure, Policy and Development, 8(9), 6991. https://doi.org/10.24294/jipd.v8i9.6991

Alshamsi, I., Sadriwala, K. F., Ibrahim Alazzawi, F. J., & Shannaq, B. (2024). Exploring the impact of generative AI technologies on education: Academic expert perspectives, trends, and implications for sustainable development goals. Journal of Infrastructure, Policy and Development, 8(11), 8532. https://doi.org/10.24294/jipd.v8i11.8532Alqahtani, H., & Kumar, G. (2024). Machine learning for enhancing transportation security: A comprehensive analysis of electric and flying vehicle systems. Engineering Applications of Artificial Intelligence, 129, 107667. https://doi.org/10.1016/j.engappai.2023.107667

Anderson, T. W. (2011). The Statistical Analysis of Time Series. John Wiley & Sons.

Ariens, S., Ceulemans, E., & Adolf, J. K. (2020). Time series analysis of intensive longitudinal data in psychosomatic research: A methodological overview. Journal of Psychosomatic Research, 137, 110191. https://doi.org/10.1016/j.jpsychores.2020.110191

Ashtari, A., & Alizadeh, B. (2022). A comparative study of machine learning classifiers for secure RF-PUF-based authentication in internet of things. Microprocessors and Microsystems, 93, 104600.

Basha, P. H., Prathyusha, G., Rao, D. N., Gopikrishna, V., Peddi, P., & Saritha, V. (2024). AI-Driven Multi-Factor Authentication and Dynamic Trust Management for Securing Massive Machine Type Communication in 6G Networks. International Journal of Intelligent Systems and Applications in Engineering, 12(1s), Article 1s.

Chaudhary, A., Singh, P., & Kaur, M. (2023). Enhancing cyber defense mechanisms using AI-driven language models. Journal of Cybersecurity and Privacy, 5(2), 134-156.

Continuous Multi-Factor Authentication: The Future of MFA. (2024). Retrieved June 21, 2024, from https://www.twosense.ai/blog/continuous-multi-factor-authentication-the-future-of-mfa

Das, S., Wang, B., Tingle, Z., & Camp, L. J. (2019). Evaluating User Perception of Multi-Factor Authentication: A Systematic Review (arXiv:1908.05901). arXiv. https://doi.org/10.48550/arXiv.1908.05901

Degiannakis, S., & Xekalaki, E. (2004). Autoregressive Conditional Heteroscedasticity (ARCH) Models: A Review. Quality Technology & Quantitative Management, 1(2), 271–324. https://doi.org/10.1080/16843703.2004.11673078

Do, N. Q., Selamat, A., Krejcar, O., Herrera-Viedma, E., & Fujita, H. (2022). Deep Learning for Phishing Detection: Taxonomy, Current Challenges and Future Directions. IEEE Access, 10, 36429–36463. IEEE Access. https://doi.org/10.1109/ACCESS.2022.3151903

Durbin, J. (1959). Efficient Estimation of Parameters in Moving-Average Models. Biometrika, 46(3/4), 306–316. https://doi.org/10.2307/2333528

Elgar, F. J., Stefaniak, A., & Wohl, M. J. A. (2020). The trouble with trust: Time-series analysis of social capital, income inequality, and COVID-19 deaths in 84 countries. Social Science & Medicine, 263, 113365. https://doi.org/10.1016/j.socscimed.2020.113365

Emmanuel, O. (2024). Estimation of future population status using global birth rate analysis. Retrieved June 21, 2024, from https://www.researchgate.net/profile/Emmanuel-Osho-2/publication/375765213_ESTIMATION_OF_FUTURE_POPULATION_STATUS_USING_GLOBAL_BIRTH_RATE_ANALYSIS/links/655b59c53fa26f66f4182105/ESTIMATION-OF-FUTURE-POPULATION-STATUS-USING-GLOBAL-BIRTH-RATE-ANALYSIS.pdf

Ghorbani, A. A., & Lu, W. (2021). Anomaly detection using time series analysis in cyber defense. IEEE Transactions on Network Security, 30(5), 340-358.

Golar, P. C., & Sharma, R. (2023). Security Analysis of the Graphical Password-Based Authentication Systems with Different Attack Proofs. International Journal of Intelligent Systems and Applications in Engineering, 11(10s), Article 10s.

Guarracino, F., Cabrini, L., Baldassarri, R., Petronio, S., De Carlo, M., Covello, R. D., Landoni, G., Gabbrielli, L., & Ambrosino, N. (2010). Noninvasive Ventilation for Awake Percutaneous Aortic Valve Implantation in High-Risk Respiratory Patients: A Case Series. Journal of Cardiothoracic and Vascular Anesthesia, 294(24), 3124–3130. https://doi.org/10.1053/j.jvca.2010.06.032

Gunawan, D., & Astika, W. (2022). The Autoregressive Integrated Moving Average (ARIMA) Model for Predicting Jakarta Composite Index. Jurnal Informatika Ekonomi Bisnis, 1–6. https://doi.org/10.37034/infeb.v4i1.114

Hằng, L. T. T., & Dũng, N. X. (2022). ARIMA Model – Vietnam’s GDP Forecasting. In N. Ngoc Thach, D. T. Ha, N. D. Trung, & V. Kreinovich (Eds.), Prediction and Causality in Econometrics and Related Topics (pp. 145–151). Springer International Publishing. https://doi.org/10.1007/978-3-030-77094-5_14

Hazratifard, M., Gebali, F., & Mamun, M. (2022). Using Machine Learning for Dynamic Authentication in Telehealth: A Tutorial. Sensors, 22(19), Article 19. https://doi.org/10.3390/s22197655

Hewamalage, H., Bergmeir, C., & Bandara, K. (2021). Recurrent Neural Networks for Time Series Forecasting: Current status and future directions. International Journal of Forecasting, 37(1), 388–427. https://doi.org/10.1016/j.ijforecast.2020.06.008

Ismagilova, E., Hughes, L., Rana, N. P., & Dwivedi, Y. K. (2022). Security, Privacy and Risks Within Smart Cities: Literature Review and Development of a Smart City Interaction Framework. Information Systems Frontiers, 24(2), 393–414. https://doi.org/10.1007/s10796-020-10044-1

Jaime, F. J., Muñoz, A., Rodríguez-Gómez, F., & Jerez-Calero, A. (2023). Strengthening Privacy and Data Security in Biomedical Microelectromechanical Systems by IoT Communication Security and Protection in Smart Healthcare. Sensors, 23(21), Article 21. https://doi.org/10.3390/s23218944

James, E., & Rabbi, F. (2023). Fortifying the IoT Landscape: Strategies to Counter Security Risks in Connected Systems. Tensorgate Journal of Sustainable Technology and Infrastructure for Developing Countries, 6(1), Article 1.

Jebamikyous, H., Li, M., Suhas, Y., & Kashef, R. (2023). Leveraging machine learning and blockchain in E-commerce and beyond: Benefits, models, and application. Discover Artificial Intelligence, 3(1), 3. https://doi.org/10.1007/s44163-022-00046-0

Jeng, H. A., Singh, R., Diawara, N., Curtis, K., Gonzalez, R., Welch, N., Jackson, C., Jurgens, D., & Adikari, S. (2023). Application of wastewater-based surveillance and copula time-series model for COVID-19 forecasts. Science of The Total Environment, 885, 163655.

Khan, H., Khan, U., & Khan, M. A. (2020). Causal Nexus between Economic Complexity and FDI: Empirical Evidence from Time Series Analysis. The Chinese Economy, 53(5), 374–394. https://doi.org/10.1080/10971475.2020.1730554

Lim, B., Arık, S. Ö., Loeff, N., & Pfister, T. (2021). Temporal Fusion Transformers for interpretable multi-horizon time series forecasting. International Journal of Forecasting, 37(4), 1748–1764. https://doi.org/10.1016/j.ijforecast.2021.03.012

Liu, Y., Gong, C., Yang, L., & Chen, Y. (2020). DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series prediction. Expert Systems with Applications, 143, 113082. https://doi.org/10.1016/j.eswa.2019.113082

M, S., A, A., O, Y., M, W., & M, A.-E. (2016). Model of security level classification for data in hybrid cloud computing. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85006374982&partnerID=40&md5=a786299f0ff4ea8b573c509cc110952d

McDowall, D., McCleary, R., & Bartos, B. J. (2019). Interrupted time series analysis. Oxford University Press. https://books.google.com/books?hl=ar&lr=&id=bACvDwAAQBAJ&oi=fnd&pg=PP1&dq=Interrupted+Time+Series+Analysis.+Oxford+University+Press,+2019.&ots=BJTnJPghQm&sig=tlv-ku1Fw8eG3N1mPOFgaseuudQ

Mills, T. C. (2019). Applied Time Series Analysis: A Practical Guide to Modeling and Forecasting. Elsevier.

Murat, M., Malinowska, I., Gos, M., & Krzyszczak, J. (2018). Forecasting daily meteorological time series using ARIMA and regression models. International Agrophysics, 32(2), 253–264. https://doi.org/10.1515/intag-2017-0007

National Institute of Standards and Technology (NIST). (2018). Framework for improving critical infrastructure cybersecurity (Version 1.1). NIST. https://doi.org/10.6028/NIST.CSWP.04162018

Nguyen, C. H. (2021). Labor force and foreign direct investment: Empirical evidence from Vietnam. The Journal of Asian Finance, Economics and Business, 8(1), 103–112.

Papaspirou, V., Maglaras, L., Ferrag, M. A., Kantzavelou, I., Janicke, H., & Douligeris, C. (2021). A novel Two-Factor HoneyToken Authentication Mechanism. 2021 International Conference on Computer Communications and Networks (ICCCN), 1–7. https://doi.org/10.1109/ICCCN52240.2021.9522319

Papathanasaki, M., Maglaras, L., & Ayres, N. (2022). Modern Authentication Methods: A Comprehensive Survey. AI, Computer Science and Robotics Technology, 2022, 1–24. https://doi.org/10.5772/acrt.08

Progonov, D., Cherniakova, V., Kolesnichenko, P., & Oliynyk, A. (2022). Behavior-based user authentication on mobile devices in various usage contexts. EURASIP Journal on Information Security, 2022(1), 6. https://doi.org/10.1186/s13635-022-00132-x

Roopashree, S., Anitha, J., Mahesh, T. R., Vinoth Kumar, V., Viriyasitavat, W., & Kaur, A. (2022). An IoT based authentication system for therapeutic herbs measured by local descriptors using machine learning approach. Measurement, 200, 111484. https://doi.org/10.1016/j.measurement.2022.111484

Rosnawintang, R., Tajuddin, T., Adam, P., Pasrun, Y. P., & Saidi, L. O. (2020). EFFECTS OF CRUDE OIL PRICES VOLATILITY, THE INTERNET AND INFLATION ON ECONOMIC GROWTH IN ASEAN-5 COUNTRIES: A PANEL AUTOREGRESSIVE DISTRIBUTED LAG APPROACH. International Journal of Energy Economics and Policy, 11(1), 15–21. https://doi.org/10.32479/ijeep.10395

SciELO - Brazil—Auto-Regressive Integrated Moving Average Model (ARIMA): Conceptual and methodological aspects and applicability in infant mortality Auto-Regressive Integrated Moving Average Model (ARIMA): Conceptual and methodological aspects and applicability in infant mortality. . Retrieved June 21, 2024, from https://www.scielo.br/j/rbsmi/a/QyYHhYbYK9wRnKmV3cP5v9n/?lang=en

Shakir M, Abood R, Sheker M, et al. (2024). Users Acceptance of Electronic Personal Synthesis Behavior (EPSB): An Exploratory Study | SpringerLink. (2024). Retrieved June 17, 2024, from https://link.springer.com/chapter/10.1007/978-3-030-64987-6_30

Shakir, M., Abubakar, A. B., Yousoff, Y., Al-Emran, M., & Hammood, M. (2016). APPLICATION OF CONFIDENCE RANGE ALGORITHM IN RECOGNIZING USER BEHAVIOR THROUGH EPSB IN CLOUD COMPUTING. Journal of Theoretical and Applied Information Technology, 94(2), 416.

Shams, T. B., Hossain, M. S., Mahmud, M. F., Tehjib, M. S., Hossain, Z., & Pramanik, M. I. (2022). EEG-based biometric authentication using machine learning: A comprehensive survey. ECTI Transactions on Electrical Engineering, Electronics, and Communications, 20(2), 225–241.

Shannaq, B. (2024a). Improving security in intelligent systems: how effective are machine learning models with tf- idf vectorization for password-based user classification. 102(22).

Shannaq, B. (2024b). Unveiling the Nexus: Exploring TAM Components Influencing Professors’ Satisfaction With Smartphone Integration in Lectures: A Case Study From Oman. TEM Journal, 2365–2375. https://doi.org/10.18421/TEM133-63

Shannaq, B., & Shakir, M. (2024). Enhancing Security with Multi-Factor User Behavior Identification Via Longest Common Subsequence Analysis. Informatica 48 (2024) 73–82 73, 48(16), 73–82. https://doi.org/10.31449/inf.v48i19.6529.

Shannaq, B., Muniyanayaka, D. K., Ali, O., Bani-Ismail, B., & Al Maqbali, S. (2024). Exploring the role of machine learning models in risk assessment models for developed organizations’ management decision policies. Journal of Infrastructure, Policy and Development, 8(13), 9364. https://doi.org/10.24294/jipd9364

Shannaq, B., Shamsi, I. A., & Majeed, S. N. A. (2019). Management Information System for Predicting Quantity Martials. 8(4).

Shastry, K. A., & Shastry, A. (2023). An integrated deep learning and natural language processing approach for continuous remote monitoring in digital health. Decision Analytics Journal, 8, 100301. https://doi.org/10.1016/j.dajour.2023.100301

Srinivasan, M., & C, S. N. (2024). Machine Learning-Based Security Enhancement in Heterogeneous Networks Using an Effective Pattern Mining Framework. International Journal of Intelligent Systems and Applications in Engineering, 12(1s), Article 1s.

Stein, E. M., & Shakarchi, R. (2011). Fourier Analysis: An Introduction. Princeton University Press.

Stylios, I., Kokolakis, S., Thanou, O., & Chatzis, S. (2021). Behavioral biometrics & continuous user authentication on mobile devices: A survey. Information Fusion, 66, 76–99. https://doi.org/10.1016/j.inffus.2020.08.021

Szymkowiak, A., Melović, B., Dabić, M., Jeganathan, K., & Kundi, G. S. (2021). Information technology and Gen Z: The role of teachers, the internet, and technology in the education of young people. Technology in Society, 65, 101565. https://doi.org/10.1016/j.techsoc.2021.101565

Thomas, P. A., & Preetha Mathew, K. (2023). A broad review on non-intrusive active user authentication in biometrics. Journal of Ambient Intelligence and Humanized Computing, 14(1), 339–360. https://doi.org/10.1007/s12652-021-03301-x

Tsang, Y. P., Choy, K. L., Wu, C. H., Ho, G. T. S., & Lam, H. Y. (2019). Blockchain-Driven IoT for Food Traceability With an Integrated Consensus Mechanism. IEEE Access, 7, 129000–129017. IEEE Access. https://doi.org/10.1109/ACCESS.2019.2940227

U.S, S. N. (2024). Why Samsung NEXT and HYPR Believe the Future Will Be Passwordless. Retrieved June 21, 2024, from https://news.samsung.com/us/samsung-next-hypr-believe-future-will-passwordless

Vyas, B., & Hurry, R. (2023). Java in Action: AI for Fraud Detection and Prevention. https://doi.org/10.13140/RG.2.2.20929.33125

Yang, B., Liu, S., Xu, T., Li, C., Zhu, Y., Li, Z., & Zhao, Z. (2024). AI-Oriented Two-Phase Multifactor Authentication in SAGINs: Prospects and Challenges. IEEE Consumer Electronics Magazine, 13(1), 79–90. IEEE Consumer Electronics Magazine. https://doi.org/10.1109/MCE.2023.3262904

Zeng, A., Chen, M., Zhang, L., & Xu, Q. (2023). Are transformers effective for time series forecasting? Proceedings of the AAAI Conference on Artificial Intelligence, 37(9), 11121–11128.

Zhou, P., Xu, H., Lee, L. H., Fang, P., & Hui, P. (2022). Are You Left Out? An Efficient and Fair Federated Learning for Personalized Profiles on Wearable Devices of Inferior Networking Conditions. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 6(2), 91:1-91:25. https://doi.org/10.1145/3534585

Zhu, H., Wang, X., Chen, X., & Zhang, L. (2020). Similarity search and performance prediction of shield tunnels in operation through time series data mining. Automation in Construction, 114, 103178. https://doi.org/10.1016/j.autcon.2020.103178




DOI: https://doi.org/10.24294/jipd9441

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mohanaad Shakir, Boumedyen Shannaq, Oualid Ali, Basel Bani-Ismail

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.