Earthquake risks assessment and urban vulnerability: Case of Nador city, northeast Morocco

Mohammed Hlal, Rida Azmi, Jérôme Chenal, El Bachir Diop, Meriem Adraoui, Seyid Abdellahi Ebnou Abdem, Imane Serbouti, Mariem Bounabi

Article ID: 9381
Vol 8, Issue 14, 2024

VIEWS - 44 (Abstract) 6 (PDF)

Abstract


This study introduces an innovative approach to assessing seismic risks and urban vulnerabilities in Nador, a coastal city in northeastern Morocco at the convergence of the African and Eurasian tectonic plates. By integrating advanced spatial datasets, including Landsat 8–9 OLI imagery, Digital Elevation Models (DEM), and seismic intensity metrics, the research develops a robust urban vulnerability index model. This model incorporates urban land cover dynamics, topography, and seismic activity to identify high-risk zones. The application of Landsat 8–9 OLI data enables precise monitoring of urban expansion and environmental changes, while DEM analysis reveals critical topographical factors, such as slope instability, contributing to landslide susceptibility. Seismic intensity metrics further enhance the model by quantifying earthquake risk based on historical event frequency and magnitude. The calculation based on higher density in urban areas, allowing for a more accurate representation of seismic vulnerability in densely populated areas. The modeling of seismic intensity reveals that the most susceptible impact area is located in the southern part of Nador, where approximately 50% of the urban surface covering 1780.5 hectares is at significant risk of earthquake disaster due to vulnerable geological formations, such as unconsolidated sediments. While the findings provide valuable insights into urban vulnerabilities, some uncertainties remain, particularly due to the reliance on historical seismic data and the resolution of spatial datasets, which may limit the precision of risk estimations in less densely populated areas. Additionally, future urban expansion and environmental changes could alter vulnerability patterns, underscoring the need for continuous monitoring and model refinement. Nonetheless, this research offers actionable recommendations for local policymakers to enhance urban planning, enforce earthquake-resistant building codes, and establish early warning systems. The methodology also contributes to the global discourse on urban resilience in seismically active regions, offering a transferable framework for assessing vulnerability in other coastal cities with similar tectonic risks.


Keywords


seismic risk; urban vulnerability; Nador; seismic vulnerability indices; landslides; risk mitigation strategies

Full Text:

PDF


References


Aksha, S. K., Juran, L., Resler, L. M., Zhang, Y. (2019). An Analysis of Social Vulnerability to Natural Hazards in Nepal Using a Modified Social Vulnerability Index. International Journal of Disaster Risk. 10:103–116.

Alexander, D. (1993). Natural Disasters. Routledge: London, UK, 654 p.

ArcGIS, Hub. (2024). Available online: https://hub.arcgis.com/maps/21bcbcaa915c433ba7c7850bafeede7b/explore?location = 35.176736%2C-2.949879%2C12.94 (accessed on 18 March 2024).

Aven, T. (2011). On some recent definitions and analysis frameworks for risk, vulnerability, and resilience. Risk Analysis: An International Journal. 31:515–522.

Bankoff, G., Frerks, G., Hilhorst, T., Hilhorst, D. (2004). Mapping vulnerability: disasters, development, and people. Earthscan: Sterling, USA, pp. 128–183.

Benamrane, M., Németh, K., Jadid, M., Talbi, EH. (2022). Geomorphological Classification of Monogenetic Volcanoes and Its Implication to Tectonic Stress Orientation in the Middle Atlas Volcanic Field (Morocco). Land. 11: 1–35. doi:10.3390/land11010035.

Benzaggagh, M., Mokhtari, A., Rossi, P., Michard, A., Maz, A. E., Chalouan, A., Saddiqi, O., Rjimati, E. C. (2014). Oceanic units in the core of the External Rif (Morocco): Intramargin hiatus or South-Tethyan remnants? Journal of Geodynamics. 77:4–21. doi:10.1016/j.jog.2013.12.001.

Blaikie, P., Cannon, T., Davis, I., Wisner, B. (2004). At Risk: Natural Hazards, People’s Vulnerability and Disasters. Routledge: London, UK, 496 p.

Breaking the cycle of risk. (2024). Available online: https://www.undrr.org/building-risk-knowledge/ (accessed on 4 March 2024).

Brückl, E., Peter, C., Stefan, M., Rita, M. (2021). Seismological Data Acquisition and Analysis within the Scope of Citizen Science. In: Walter S (editor). Earthquakes - From Tectonics to Buildings, 2nd ed. IntechOpen: Catholic University of El Salvador, El Salvador, pp. 2–21.

Cepeda, J., Quan Luna, B., Nadim, F. (2013). Assessment of landslide run-out by Monte Carlo simulations. Proceedings of the Landslides; Risk & Reliability, Paris, France. pp. 2157–2160.

Chaaraoui, A., Chourak, M., Hamdache, M., Peláez, J. A., Henares, J. (2022). Amplification analysis at Nador city and surrounding area (NE of Morocco). Journal of African Earth Sciences. 196:3–13.

Chaaraoui, A., Chourak, M., Peláez, J. A., Cherif, S. E. (2021). Seismic site effects investigation in the urban area of Nador (NE Morocco) using ambient noise measurements. Arabian Journal of Geosciences. 14:1937. doi:10.1007/s12517-021-08525-1.

Cohen, A. V. (1984). Overview and definition of risk: Its assessment and management. Environment International. 10:359–366.

De Risi, R., Penna, A., Simonelli, A. L. (2019). Seismic risk at urban scale: the role of site response analysis. Soil Dynamics and Earthquake Engineering. 123: 320–336. doi:10.1016/j.soildyn.2019.05.003.

Dong, L., Shan, J. (2013). A comprehensive review of earthquake-induced building damage detection with remote sensing techniques. ISPRS Journal of Photogrammetry and Remote Sensing. 84: 85–99. doi:10.1016/j.isprsjprs.2013.05.011.

Egenhofer, M. J. (1991). Reasoning about binary topological relations. Marine Geology. 525: 141–160.

Fekete, A., Asadzadeh, A., Ghafory-Ashtiany, M., Amini-Hosseini, K., Hetkämper, C., Moghadas, M., Ostadtaghizadeh, A., Rohr, A., Kötter, T. (2020). Pathways for advancing integrative disaster risk and resilience management in Iran: Needs, challenges and opportunities. International Journal of Disaster Risk Reduction. 49:1–12.

Flanagan, B. E., Gregory, E. W., Hallisey, E. J., Heitgerd, J. L., Lewis, B. (2011). A social vulnerability index for disaster management. Journal of Homeland Security and Emergency Management. 8: 1–22. doi:10.2202/1547-7355.1792.

Freddi, F., Galasso, C., Cremen, G., et al. (2021). Innovations in earthquake risk reduction for resilience: Recent advances and challenges. International Journal of Disaster Risk Reduction. 60:102267.

Gatto, M., Misiano, S., Montrasio, L. (2022). On the Use of MATLAB to Import and Manipulate Geographic Data: A Tool for Landslide Susceptibility Assessment. Geographies. 2: 341–353. doi:10.3390/geographies2030024.

Geojamal. (2024). Available online: https://www.geojamal.com/2014/11/telecharger-les-cartes-geologiques-du-maroc.html (accessed on 1 May 2024).

Gibbs, M. T., Browman, H. I. (2015). Risk assessment and risk management: a primer for marine scientists. Journal of Marine Science. 72:992–996.

Giuliani, F., De Falco, A., Cutini, V. (2022). Rethinking earthquake-related vulnerabilities of historic centres in Italy: Insights from the Tuscan area. Journal of Cultural Heritage. 54: 79–93. doi:10.1016/j.culher.2021.12.005.

Green, H. K., Lysaght, O., Saulnier, D. D., et al. (2019). Challenges with disaster mortality data and measuring progress towards the implementation of the Sendai framework. International Journal of Disaster Risk Science. 10:449–461.

Guo, Y., Liu, S., Qiu, L., Zhang, C., Shan, W. (2024). Spatial stratified heterogeneity analysis of field scale permafrost in Northeast China based on optimal parameters-based geographical detector. PLOS ONE. 19: 1–22. doi:10.1371/journal.pone.0240401.

Haldon, J., Rosen, A. (2018). Society and environment in the East Mediterranean ca 300–1800 CE. Problems of resilience, adaptation and transformation. Introductory essay. Human Ecology. 46:275–290.

Hantz, D., Corominas, J., Crosta, G. B., Jaboyedoff, M. (2021). Definitions and concepts for quantitative rockfall hazard and risk analysis. Geosciences. 11:2–16.

Huggett, R., Shuttleworth, E. (2022). Fundamentals of geomorphology. In: Routledge, London, UK. 682 p.

Hung, H. C., Ho, M. C., Chen, Y. J., Chian, C. Y., Chen, S. Y. (2013). Integrating long-term seismic risk changes into improving emergency response and land-use planning: a case study for Hsinchu City, Taiwan. Natural Hazards. 69: 491–508. doi:10.1007/s11069-013-0727-1.

Iervolino, I., Baraschino, R., Belleri, A., Cardone, D., Corte, G. D., Franchin, P., et al. (2023). Seismic fragility of Italian code-conforming buildings by multi-stripe dynamic analysis of three-dimensional structural models. Journal of Earthquake Engineering. 27: 4415–4448. doi:10.1080/13632469.2022.2099181.

Kellenberg, D., Mobarak, A. M. (2011). The economics of natural disasters. Annual Review of Resource Economics. 3:297–312.

Kelman, I. (2018). Lost for words amongst disaster risk science vocabulary? International Journal of Climate Change Strategies and Management. 9:281–291.

Kreibich, H., Van Loon, A. F., Schröter, K., et al. (2022). The challenge of unprecedented floods and droughts in risk management. Nature. 608:80–86.

Kreimer, A., Arnold, M., Carlin, A. (2003). Building safer cities: the future of disaster risk. World Bank, Washington, USA, 293 p.

Li, S. Q. (2024). Comparison of RC girder bridge and building vulnerability considering empirical seismic damage. Ain Shams Engineering Journal. 15: 1–13. doi:10.1016/j.asej.2023.101019.

Lummen, N. S., Yamada, F. (2014). Implementation of an integrated vulnerability and risk assessment model. Natural Hazards. 73:1085–1117. doi:10.1007/s11069-014-1125-9.

Lungu, E., ksendal, B. (2001). Optimal harvesting from interacting populations in a stochastic environment. Geodesy and Geodynamics. 7: 527–539.

Mao, Y., Li, Y., Teng, F., Sabonchi AKS, Azarafza, M., Zhang, M. (2024). Utilizing Hybrid Machine Learning and Soft Computing Techniques for Landslide Susceptibility Mapping in a Drainage Basin. Water. 16:1–28.

Marsh, M. L. (2011). Application of accelerated bridge construction connections in moderate-to-high seismic regions. Transportation Research Board: Washington, USA. 698:3–13.

Maskrey, A. (1989). Disaster mitigation: a community-based approach. Oxfam, Oxford, GB, 100 p.

McDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis current practice and challenges. Canadian Geotechnical Journal. 54: 605–620. doi:10.1139/cgj-2016-0147.

Meerow, S., Newell, J. P., Stults, M. (2016). Defining urban resilience: A review. Landscape and Urban Planning. 147:38–49.

Meng, Q., Smith, S. A., Rodgers, J. (2024). Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA. GeoHazards. 5: 364–373. doi:10.3390/geohazards5020023.

Milutinovic, Z. V., Trendafiloski, G. S. (2003). Risk-UE: An advanced approach to earthquake risk scenarios with applications to different European towns. Contract: EVK4-CT-2000-00014; WP4: Vulnerability of current buildings. pp. 1–111.

Mobarki, M., Talbi, A. (2022). Spatio-temporal analysis of main seismic hazard parameters in the Ibero–Maghreb region using an Mw-homogenized catalog. Acta Geophysica. 70:979–1001. doi:10.1007/s11600-022-00738-9.

Naimi, M. N., Cherif, A. (2021). Sedimentology and ichnology of the mid-Cretaceous succession of the Ouled Nail Mounts (Eastern Saharan Atlas, Algeria). Geologia Croatica. 74: 209–223. doi:10.4154/gc.2021.15.

Neria, Y., Nandi, A., Galea, S. (2008). Post-traumatic stress disorder following disasters: a systematic review. Psychological Medicine. 38:467–480.

Nicholls, R. J., Hanson, S. E., Lowe, J. A., Slangen, A. B., Wahl, T., Hinkel, J., Long, A. J. (2021). Integrating new sea-level scenarios into coastal risk and adaptation assessments: An ongoing process. Wiley Interdisciplinary Reviews: Climate Change. 12:1–27.

Nocquet, J. M., Calais, E. (2004). Geodetic measurements of crustal deformation in the Western Mediterranean and Europe. Pure and Applied Geophysics. 161:661–681. doi:10.1007/s00024-003-2468-z/

Nocquet, J. M. (2012). Present-day kinematics of the Mediterranean: A comprehensive overview of GPS results. Tectonophysics. 579:220–242. doi:10.1016/j.tecto.2012.03.037.

Norris, F. H., Stevens, S. P., Pfefferbaum, B., et al. (2008). Community resilience as a metaphor, theory, set of capacities, and strategy for disaster readiness. American Journal of Community Psychology. 41:127–150.

OpenStreetMap. (2024). Available online: http://tile.openstreetmap.org (accessed on 04 May 2024).

OpenTopoMap. (2024). Available online: https://tile.opentopomap.org/#marker = 13/35.16413/-2.93009 (accessed on 10 May 2024).

Pelling, M. (2003). The Vulnerability of Cities: Natural Disasters and Social Resilience. Routledge, London, UK, 224 p.

Petrișor, A. I., Sirodoev, I., Ianoș, I. (2020). Trends in the national and regional transitional dynamics of land cover and use changes in Romania. Remote Sensing. 12: 1–23. doi:10.3390/rs12081142.

Poujol, A., Ritz, J. F., Tahayt, A., Vernant, P., Condomines, M., Blard, P. H., Billant, J., Vacher, L., Tibari, B., Hni, L., Idrissi, A. K. (2014). Active tectonics of the Northern Rif (Morocco) from geomorphic and geochronological data. Journal of Geodynamics. 77:70–88. doi:10.1016/j.jog.2014.02.001.

Raji, O., Dezileau, L., Tessier, B., Niazi, S., Snoussi, M., Von Grafenstein, U., Poujol, A. (2018). Climate and tectonic-driven sedimentary infill of a lagoon as revealed by high-resolution seismic and core data (the Nador lagoon, NE Morocco). Marine Geology. 398: 99–111. doi:10.1016/j.margeo.2017.12.004.

Rashed, T., Weeks, J. (2003). Assessing vulnerability to earthquake hazards through spatial multicriteria analysis of urban areas. International Journal of Geographical Information Science. 17: 547–576. doi:10.1080/1365881031000114071.

Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., et al. (2006). GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. Journal of Geophysical Research: Solid Earth. 111, doi:10.1029/2005JB004051/

Romero-Andrade, R., Trejo-Soto, M. E., Nayak, K., Hernández-Andrade, D., Bojorquez-Pacheco, N. (2023). Lineament analysis as a seismic precursor: the El Mayor Cucapah earthquake of April 4, 2010 (MW7.2), Baja California, Mexico. Geodesy and Geodynamics. 14: 121–129. doi:10.1016/j.geog.2023.03.004.

Rosso, F., Bernabei, L., Bernardini, G., Russo, M., Angelosanti, M., Currà, E., et al. (2022). Urban morphology parameters towards multi-risk scenarios for squares in the historical centers: Analyses and definition of square typologies and application to the Italian context. Journal of Cultural Heritage. 56: 167–182. doi:10.1016/j.culher.2021.12.003.

Rus, K., Kilar, V., Koren, D. (2018). Resilience assessment of complex urban systems to natural disasters: A new literature review. International Journal of Disaster Risk Reduction. 31:311–330.

Scheidel, A., Del Bene, D., Liu, J., Navas, G., Mingorría, S., Demaria, F., et al. (2020). Environmental conflicts and defenders: A global overview. Global Environmental Change. 63:1–12. doi:10.1016/j.gloenvcha.2020.102104.

Sharma, B., Sandhu, M. (2023). Earthquake response and its implications towards the structural design codes for Himalayan Range and adjoining regions of India. Geohazards: Analysis, Modelling and Forecasting. 53:89–101.

Smith, K. (2013). Environmental hazards: assessing risk and reducing disaster. Routledge: London, UK, 504 p.

Tang, Y., Che, A., Cao, Y., et al. (2020). Risk assessment of seismic landslides based on analysis of historical earthquake disaster characteristics. Bulletin of Engineering Geology and the Environment. 79: 2271–2284. doi:10.1007/s10064-019-01661-5.

Tsushima, H., Ohta, Y. (2014). Review on near-field tsunami forecasting from offshore tsunami data and onshore GNSS data for tsunami early warning. Journal of Disaster Research. 9:339–357.

USGS. (2024). Available online: https://earthexplorer.usgs.gov/ (accessed on 10 May 2024).

Varnes, D. J. (1984). Landslide hazard zonation: a review of principles and practice. UNESCO: Paris, France, 63 p.

Volcano Discovery. (2024). Available online: https://www.volcanodiscovery.com/place/105/earthquakes/nador.html (accessed on 8 May 2024).

Wolf, S., Hinkel, J., Hallier, M., et al. (2013). Clarifying vulnerability definitions and assessments using formalisation. International Journal of Climate Change Strategies and Management. 5:54–70.

World Bank. (2020). World Bank Annual Report 2020. The World Bank, Paris, French, 80 p.

Xu, Z., Che, A., Zhou, H. (2024). Seismic landslide susceptibility assessment using principal component analysis and support vector machine. Scientific Reports. 14: 3734. doi:10.1038/s41598-023-29776-9.

Yariyan, P., Zabihi, H., Wolf, I. D., Karami, M., Amiriyan, S. (2020). Earthquake risk assessment using an integrated Fuzzy Analytic Hierarchy Process with Artificial Neural Networks based on GIS: A case study of Sanandaj in Iran. International Journal of Disaster Risk Reduction. 50:1–17.

Zhang, S., Wang, Y., Wu, G. (2022). Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods. Remote Sensing. 14: 5945. doi:10.3390/rs14235945.




DOI: https://doi.org/10.24294/jipd9381

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Mohammed Hlal, Rida Azmi, Jérôme Chenal, El Bachir Diop, Meriem Adraoui, Seyid Abdellahi Ebnou Abdem, Imane Serbouti, Mariem Bounabi

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.