Electric-Driven Underwater Thermal Energy Storage: Commercial Utilization of Surplus Fluctuating Wind Power for District Heating

Fabien Schultz

Article ID: 9013
Vol 9, Issue 4, 2025

VIEWS - 77 (Abstract)

Abstract


This paper investigates the potential of a concept for the commercial utilization of surplus intermittent wind-generated electricity for municipal district heating based on the development of an electric-driven heat storage. The article is divided into three sections: 1. A review on energy storage systems; 2. Results and calculations after a market analysis based on electricity consumption statistics covering the years 2005-2013; and 3. Technology research and the development of an innovative thermal energy storage (TES) system. The review of energy storage systems introduces the basic principles and state-of-art technologies of TES. The market analysis describes the occurrence of excess wind power in Germany, particularly the emergence of failure work and negative electricity rates due to surplus wind power generation. Based on the review, an innovative concept for a prototype of a large-scale underwater sensible heat storage system, that is combined with a latent heat storage system, was developed. The trapezoidal prism-shaped storage system developed possesses a high efficiency factor of 0.98 due to its insulation, large volume, and high rate of energy conversion. Approximate calculations showed that the system would be capable of supplying about 40,000 people with hot water and energy for space heating, which is equivalent to the population of a medium-sized city. Alternatively, around 210,000 inhabitants could be supplied with hot water only. While the consumer´s costs for hot water generation and space heating would be lowered by approximately 20.0%-73.4%, the thermal energy storage would generate an estimated annual profit of 3.9 million Euros or more (excluding initial costs and maintenance costs).

Keywords


Thermal energy storage; District heating; Surplus wind energy; Latent heat; Sensible heat; Underwater storage



References

  1. Becker D. Positionspapier zur Weiterentwicklung des Strommarkts – Energiekonzept der Bundesregierung. Berlin: Mitglied des Deutschen Bundestages; 2013.
  2. Rummich E. Energiespeicher – Grundlagen, Komponenten, Systeme und Anwendungen. Renningen, Germany: Expert Verlag; 2009.
  3. Chen HS, Cong TN, Yang W, Tan CQ, Li YL, Ding YL. Progress in electrical energy storage system: A critical review. Prog Nat Sci. 2009;19:291-312.
  4. Khartchenko NV. Advanced energy systems. Berlin: Institute of Energy Engineering & Technology University; 1997.
  5. Rebhan E. Energiehandbuch – Gewinnung, Wandlung und Nutzung von Energie. Berlin: Springer; 2002.
  6. Sharma A, Tyagi VV, Chen CR, Buddhi D. Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews. 2009;13:318-45.
  7. Abedin AH, Rosen MA. A critical review of thermochemical energy storage systems. The Open Renewable Energy Journal. 2011;4:42-46.
  8. Hasnain SM. Review on sustainable thermal energy storage technologies, part І: heat storage materials and techniques. Energy Convers. Mgmt. 1998;39:1127-38.
  9. Institut für Regenerative Energietechnik. Abstract Studie – Thermische Energiespeicher zur effizienten Nutzung erneuerbaren Energien / Überschusswärme und ihre Umsetzung in Thüringen. Erfurt: LEG Thüringen mbH; 2009.
  10. Hasnain SM. Energex `93. USA: Proc. 12th Energy Technical Conference; 1993.
  11. International Energy Agency (IEA). Compact thermal energy storage: material development and system integration. Annex text (draft), Task 42, Annex 28, Solar Heating and Cooling Programme; 2008.
  12. George A. Hand book of thermal design. In: Guyer C, editor.
  13. Phase change thermal storage materials. McGraw Hill Book Co.; 1989 [chapter 1].
  14. Arteconi A, Hewitt NJ, Polonara F. Domestic demand-side management (DSM): Role of heat pumps and thermal energy storage (TES) systems. Appl Therm Eng. 2013;51:155-165.
  15. Deutsche Energie-Agentur (dena) GmbH. Analyse der Notwendigkeit des Ausbaus von Pumpspeicherwerken und anderen Stromspeichern zur Integration der erneuerbaren Energien (in brief: PSW -Integration EE). Berlin: dena; 2010.
  16. Federal Environment Ministry of Germany. Langfristszenarien und Strategien für den Ausbau erneuerbarer Energien in Deutschland. Berlin: BMU; 2009.
  17. Pieper C, Rubel H. Electricity Storage – making large scale adoption of wind and solar energies a reality. Boston, USA: The Boston Consulting Group (BCG); 2010.
  18. European Transmission System Operators (ETSO). Network presentation and tasks: https://www.entsoe.eu/about-entso-e; European Network of Transmission System Operators for Electricity (ENTSOE); [date of retrieval: 22nd July 2013].
  19. DNV KEMA Energy & Sustainability. Potential for smart electric thermal storage – contributing to a low carbon energy system. Arnhem, The Netherlands: KEMA Nederland B.V.; 2013.
  20. Federal Ministry of Economy and Technology of Germany. Stromversorgung: Datenblatt. from December 2011: http://www.bmwi.de/DE/Themen/Energie/stromversorgung.html ; [date of retrieval: 23th July 2013].
  21. German Energy Agency (Dena). Energy data BMWi. Datenbase: AG Energiebilanzen e.V; (dated to: 12/2011, basic year 2012).
  22. Deutsche WindGuard GmbH. Status des Windenergieausbaus in Deutschland. Varel: Bundesverband Windenergie (BWE) and VDMA power systems; 2012.
  23. Popp M. Speicherbedarf bei einer Stromversorgung mit erneuerbaren Energien. Dissertation. Braunschweig: TU Carolo-Wilhelmina zu Braunschweig; 2010.
  24. Institut für Solare Energieversorgungstechnik (ISET). Wind Energy Report Germany 2008 – Deutscher Windmonitor. Kassel: ISET; 2008.
  25. Federal Network Agency of Germany (BNetzA). Power plant catalog (Kraftwerksliste der Bundesnetzagentur). Bonn, Germany: BNetzA; date: 27th March 2013.
  26. Zalba B, Marin JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003;23:251-83.
  27. Paatero JV, Lund PD. Effect of energy storage on variations in wind power. Wind Energy. 2005;8:421-41.
  28. Federal Ministry of Economy and Technology of Germany. Energy data – Energiedaten – Ausgewählte Grafiken. Berlin: BMWi; [last update: 31st January 2013].
  29. Federal Assoziation of Wind Energy (Bundesverband WindEnergie e.V. – BWE). Studie: Abschätzung der Bedeutung des Einspeisemangements nach § 11 EEG und § 13 Abs. 2 EnWG – Auswirkungen auf die Windenergieerzeugung in den Jahren 2010 und 2011. Berlin: BWE; 2012.
  30. Federal Assoziation of Wind Energy (Bundesverband WindEnergie e.V. – BWE). Studie: Abschätzung der Bedeutung des Einspeisemangements nach EEG – Auswirkungen auf die Windenergieerzeugung in den Jahren 2009 und 2010. Berlin: BWE; 2011.
  31. Federal Assoziation of Wind Energy (Bundesverband WindEnergie e.V. – BWE). Kurzstudie: Bewertung von Einspeisenetzen. Berlin: BWE; 2012.
  32. Desgrosseilliers L, Whitman CA, Groulx D, White MA. Dodecanoic acid as a promising phase-change material for thermal energy storage. Appl Therm Eng. 2013;53:37-41.
  33. Chaudhari VN, Rathod MK, Chaudhari KA. Stearid acid as phase change material: thermal reliability test and compatibility with some construction materials. Intern. Journ. of Eng. Research & Tech. Vol 2; 2013.
  34. Sari A, Kaygusuz K. Thermal energy storage characteristics of myristic and stearic acids eutectic mixture for low temperature heating applications. Chinese J. Chem. Eng. 2006; 14:270-75.
  35. Agyenim F, Hewit N, Eames P, Smyth M. A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS). Renewable and Sustainable Energy Reviews. 2010;14:615-28.
  36. Federal Network Agency of Germany (BNetzA). Bericht zum Zustand der leistungsgebundenen Energieversorgung im Winter 2012/2013. Bonn, Germany: BNetzA; date: 20th June 2013.
  37. Deutsche Industrie- und Handelskammer (DIHK). Faktenpapier Strompreise in Deutschland – Bestandteile, Entwicklungen, Strategien. Berlin: DIHK; 2012.
  38. Fraunhoder Institute for Solar Energy Systems (ISE). Studie: Stromentstehungskosten Erneuerbare Energien. Freiburch: ISE; version: May 30th 2012.
  39. Federal Environment Ministry of Germany (BMU). Erneuerbare Energien in Zahlen – Nationale und international Entwicklung. Berlin: BMU; 2012.
  40. Der Spiegel-Verlag. Magazine Spiegel. Article: Windiges Minus. Hamburg: Spiegel-Verlag; 2010:10.
  41. European Energy Exchange (EEX). Index description.. Leipzig: EEX. version 0006; 2012.
  42. International Federation of Association Football (FIFA). Fussballstadien – Technische Empfehlungen und Anforderungen. 4th edition. Zürich, Schweiz: Official publication by Fédération Internationale de Football Association; 2007.
  43. Ataer ÖE. Study of thermal energy. Energy storage systems Vol. 1. Oxford, UK: EOLSS Publishers. 2009; 97-116.
  44. Wagner W, Pruß A. The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data. Vol. 2: No 2; 2002.
  45. Stephan K, Mayinger F. Thermodynamik – 1 Einstoffsysteme. 15. Auflage. Berlin, Germany: Springer; 1998.
  46. VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurwesen. VDI-Wärmeatlas – Berechnungsblätter für den Wärmeübergang. 8th edition. Berlin: Springer; 1997.
  47. Langeheinecke K, Jany P, Sapper E. Thermodynamik für Ingenieure – ein Lehr- und Arbeitsbuch für das Studium. 3rd edition. Braunschweig, Germany: Friedr. Vieweg & Sohn Verlagsgesellschaft; 2001.
  48. Shah LJ, Furbo S. Entrance effects in solar storage tanks. Solar Energy. 2003;75(4):337-48.
  49. Dincer I, Rosen MA. Thermal Energy Storage: Systems and Applications. England: Wiley; 2002.
  50. Babay S, Bougettaia H, Bechki D, Boughali S, Bouchekima B, Mahcene H. Review on thermal energy storage systems. Algeria: Department of Physics, Laboratory of New and Renewable Energy in Arid Zones (LENREZA), Quargla University; 2013.
  51. Oladunjoye MA, Sanuade OA. Thermal diffusivity, thermal effusivity and specific heats of soils in Olorunsogo powerplant, Southwestern Nigeria. IJRRAS/arpapress. 2012;13(2).
  52. Hahne E. Storage of sensible heat. Energy storage systems Vol. 1. Oxford, UK: EOLSS Publishers. 2009; 117-47.
  53. Kretzschmar HJ, Kraft I. Kleine Formelsammlung Technische Thermodynamik. Leipzig, Germany: Carl Hanser Verlag; 2009.
  54. Römpp chemistry encyclopedia. online trial license from July 2013: Fabien Schultz. Stuttgart: Georg Thieme Verlag KG; 2013.
  55. Lane GA. Low temperature heat storage with phase change materials. Int. J. Ambient Energy. 1980;1:155-68.
  56. Heckenkamp J., Baumann H. Latentwärmespeicher. Sonderdruck aus Nachrichten. 1997;11:1075-81.
  57. Abhat A. Low temperature latent heat thermal energy storage: heat storage materials. Solar Energy. 1983;30:313-32.
  58. Neumann R, Emons HH. Results of thermal analysis for investigation of salt hydrates as latent heat-storage materials. J. Thermal Analysis. 1989;35:1009-31.
  59. Lindner F. Wärmespeicherung mit Salzen und Salzhydraten. Ki Luft- und Kältetechnik. 1996;10:462-67.
  60. Jing L, Zhongliang L, Chongfang M. An experimental study on the stability and reliability of the thermal properties of barium hydroxide octahydrate as a phase change material. Beijing, China: The Key Laboratory of Enhanced Heat Transfer and Energy Conservation of the Education Ministry, China / The Beijing Municipal Key Laboratory of Heat Transfer and Energy Conversion / College of Environmental and Energy Engineering, Beijing University of Technology; 2007.
  61. Merck KGaA. Product data sheet – Barium hydroxide octahydrate, purest. Darmstadt, Germany: Merck KGaA; 2013.
  62. Carl Roth GmbH. Barium hydroxide octahydrate ≥98%, p.a., ISO - Safety data sheet pursuant to Act (EC) No 1907/2006. Karlsruhe, Germany: Carl Roth GmbH; 2012.
  63. Federal Ministry for Environment, Nature Conservation and Nuclear Safety. Umgang mit wassergefährdenden Stoffen. Berlin: Federal Ministry for Environment, Nature Conservation and Nuclear Safety; 1st March 2013.
  64. Marx H. Wärmespeicher auf Salzbasis. Workshop Thermische Energiespeicher Thüringen: K-UTEC AG Salt Technologies; 2010.
  65. Oberpaul P. Latentwärmespeicher – Funktionsprinzip und Anwendungsbereiche. Bayreuth, Germany: University of Bayreuth – Physical Chemistry; 2002.
  66. Hörmansdörfer G. Latentwärmespeichermittel und deren Anwendung. European patent No: EP0402304 A1; 1990.
  67. Hörmansdörfer G. Speichersalz-Mischungen. European patent No: EP 0531464 B1; 1996.
  68. Hansen AB, Jackson A. High performance polypropylene thermal insulation for high temperature and deep water applications. Norway: Bredero Shaw Norway AS, div. Thermotite; 2005.
  69. Price B, Hansen AB, Rydin C. Development and qualification of novel thermal insulation systems for deepwater flowlines and risers based on polypropylene. Houston, Texas, USA: Offshore Technology Conference, OTC 14121; 2002.
  70. Fisch N, Bodmann M, Kühl L, Saße C, Schnürer H. Wärmespeicher. 4th edition. Berlin, Germany: Solarpraxis AG; 2005.
  71. INEOS. Typical engineering properties of polypropylene. Texas, USA: INEOS olefins & polymers USA; 2010.
  72. Verein Deutscher Ingenieure eV. VDI 2067 – Wirtschaftlichkeit gebäudetechnischer Anlagen. Düsseldorf, Germany: VDI eV; last update: 2013.
  73. Deutsche Auftragsagentur (DAA). Durschnittlicher Stromverbrauch/Gasverbrauch Warmwasser. Hamburg, Germany: DAA: www.modernes-bad.com ; [date of retrieval: 1th August 2013].
  74. Offel T. Warmwasser durch Heizöl. Köln, Germany: http://www.energiesparen-im-haushalt.de/energie/bauen-und-modernisieren/modernisierung-haus/heizung-moder nisieren/heizungsanlage-erneuern/oelheizung-erneuern/ heizoel-warmwasser.html ; [date of retrieval: 1th August 2013].
  75. Statista GmbH. Durchschnittlicher Preis für leichtes Heizöl in den Monaten Juni 2012 bis
  76. Juni 2013 (Cent pro Liter). License of Neubrandenburg Univeristy of Applied Sciences.
  77. Hamburg, Germany: http://de.statista.com/statistik/daten/ studie/1692/umfrage/preis-fuer-
  78. einen-liter-leichtes-heizoel monatsdurchschnittswerte; [date of retrieval: 1th August 2013].
  79. Verivox GmbH. Verivoc – Verbraucherpreisindex Gas. Heidelberg, Germany: Verivox GmbH: http://www.verivox .de/verbraucherpreisindex-gas ; [date of retrieval: 1th August 2013].
  80. KWH Preis UG. Article: average space heating costs in private households in Germany. Ulm, Germany: http://www.kwh-preis.de/durchschnittlichen-heizkosten-im-haushalt ; [date of retrieval: 1th August 2013].
  81. Deutsches Statistisches Bundesamt (DESTATIS). Zuhause in Deutschland – Ausstattung und Wohnsituation privater Haushalte. edition 2009. Wiesbaden, Germany: DESTATIS; 2009.


DOI: https://doi.org/10.24294/jipd9013

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Fabien Schultz

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.