Adaptation climate change through application of green infrastructure household scale rainwater harvesting in tropical coastal areas based fuzzy logic

Imam Suprayogi, Manyuk Fauzi, Nurdin Nurdin, Fakhri Fakhri, Dian Yustika Putri Utami, Yenita Morena, Safridatul Audah, Ermiyati Ermiyati, Mubarak Mubarak

Article ID: 8754
Vol 8, Issue 11, 2024

VIEWS - 743 (Abstract)

Abstract


Freshwater problems in coastal areas include the process of salt intrusion which occurs due to decreasing groundwater levels below sea level which can cause an increase in salt levels in groundwater so that the water cannot be used for water purposes, human consumption and agricultural needs. The main objective of this research is to implementation of RWH to fulfill clean water needs in tropical coastal area in Tanah Merah Village, Indragiri Hilir Regency, with the aim of providing clean water to coastal communities. The approach method used based on fuzzy logic (FL). The model input data includes the effective area of the house’s roof, annual rainfall, roof runoff coefficient, and water consumption based on the number of families. The BWS III Sumatera provided the rainfall data for this research, which was collected from the Keritang rainfall monitoring station during 2015 and 2021. The research findings show that FL based on household scale RWH technology is used to supply clean water in tropical coastal areas that the largest rainwater contribution for the 144 m2 house type for the number of residents in a house of four people with a tank capacity of 29 m2 is 99.45%.


Keywords


adaptation; climate change; rainwater harvesting; tank capacity; tropical coastal area; fuzzy logic

Full Text:

PDF


References


Abdulla, F. A., & Al-Shareef, A. W. (2009). Roof rainwater harvesting systems for household water supply in Jordan. Desalination, 243(1–3), 195–207. https://doi.org/10.1016/j.desal.2008.05.013 Amundsen, H., Hovelsrud, G. K., Aall, C., et al. (2018). Local governments as drivers for societal transformation: towards the 1.5 °C ambition. Current Opinion in Environmental Sustainability, 31, 23–29. https://doi.org/10.1016/j.cosust.2017.12.004 Antoniou, G., Kathijotes, N., Spyridakis, D. S., et al. (2014). Historical development of technologies for water resources management and rainwater harvesting in the Hellenic civilizations. International Journal of Water Resources Development, 30(4), 680–693. https://doi.org/10.1080/07900627.2014.900401 Bai, Y., Zhuang, H., Wang, D. (2006). Fundamentals of Fuzzy Logic Control Fuzzy Sets, Fuzzy Rules, and Defuzzification. In: Advanced Fuzzy Logic Technologies in Industrial Applications. Springer London. https://doi.org/10.1007/978-1-84628-469-4 Bardossy, A., Bogardi, I., & Duckstein, L. (1990). Fuzzy regression in hydrology. Water Resources Research, 26(7), 1497–1508. Portico. https://doi.org/10.1029/wr026i007p01497 Bardossy, A., Duckstein, L., & Bogardi, I. (1995). Fuzzy rule‐based classification of atmospheric circulation patterns. International Journal of Climatology, 15(10), 1087–1097. Portico. https://doi.org/10.1002/joc.3370151003 Bardossy, A., Hagaman, R., Duckstein, L., Bogardi, I. (1991). Fuzzy Least Squares Regression: Theory and Application. In: Fedrizzi, M., Kacprzyk, J. (editors). Fuzzy Regression Models. Omnitech Press, Warsaw. pp. 66-86. Barragán-Montero, A., Javaid, U., Valdés, G., et al. (2021). Artificial intelligence and machine learning for medical imaging: A technology review. Physica Medica, 83, 242–256. https://doi.org/10.1016/j.ejmp.2021.04.016 Bhattacharjee, D., Kim, W., Chattopadhyay, A., et al. (2018). Multi-valued and Fuzzy Logic Realization using TaOx Memristive Devices. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18329-3 Bikmukhametov, T., & Jäschke, J. (2020). Combining machine learning and process engineering physics towards enhanced accuracy and explainability of data-driven models. Computers & Chemical Engineering, 138, 106834. https://doi.org/10.1016/j.compchemeng.2020.106834 Bogárdi, I., Bárdossy, A., & Duckstein, L. (1983). Regional management of an aquifer for mining under fuzzy environmental objectives. Water Resources Research, 19(6), 1394–1402. Portico. https://doi.org/10.1029/wr019i006p01394 Bogardi, I., Bardossy, A., Duckstein, L., et al. (2004). Fuzzy Logic in Hydrology and Water Resources. Fuzzy Logic in Geology, 153–190. https://doi.org/10.1016/b978-012415146-8/50009-3 Bogardi, I., Duckstein, L., & Szidarovszky, F. (1982). Bayesian analysis of underground flooding. Water Resources Research, 18(4), 1110–1116. Portico. https://doi.org/10.1029/wr018i004p01110 Bouktif, S., Fiaz, A., Ouni, A., et al. (2018). Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies, 11(7), 1636. https://doi.org/10.3390/en11071636 Chubaka, C. E., Whiley, H., Edwards, J. W., et al. (2018). A Review of Roof Harvested Rainwater in Australia. Journal of Environmental and Public Health, 2018, 1–14. https://doi.org/10.1155/2018/6471324 Corfee-Morlot, J., Cochran, I., Hallegatte, S., et al. (2010). Multilevel risk governance and urban adaptation policy. Climatic Change, 104(1), 169–197. https://doi.org/10.1007/s10584-010-9980-9 De Campos, L. M., Moral, S. (1993). Learning Rules for a Fuzzy Inference Model. Fuzzy Sets Syst ,59(3), 247-257 https://doi.org/10.1016/0165-0114(93)90470-3 Domènech, L., & Saurí, D. (2011). A comparative appraisal of the use of rainwater harvesting in single and multi-family buildings of the Metropolitan Area of Barcelona (Spain): social experience, drinking water savings and economic costs. Journal of Cleaner Production, 19(6–7), 598–608. https://doi.org/10.1016/j.jclepro.2010.11.010 Elbeltagi, A., Seifi, A., Ehteram, M., et al. (2023). GLUE analysis of meteorological-based crop coefficient predictions to derive the explicit equation. Neural Computing and Applications, 35(20), 14799–14824. https://doi.org/10.1007/s00521-023-08466-4 Feng, L. H., & Luo, G. Y. (2011). Application of possibility-probability distribution in assessing water resource risk in Yiwu city. Water Resources, 38(3), 409–416. https://doi.org/10.1134/s009780781103002x Fewkes, A. (2000). Modelling the Performance of Rain Water Collection System: Toward a Generalised Approach. Urban Water, 1, 323-333. https://doi.org/10.1016/S1462-0758(00)00026-1 Fewkes, A. (2012). A review of rainwater harvesting in the UK. Structural Survey, 30(2), 174–194. https://doi.org/10.1108/02630801211228761 Fewkes, A., & Butler, D. (2000). Simulating the performance of rainwater collection and reuse systems using behavioural models. Building Services Engineering Research and Technology, 21(2), 99–106. https://doi.org/10.1177/014362440002100204 Fewkes, A., & Butler. D. (1999). The Sizing of Rainwater Stores Using Behavioural Models. Nottingham: The Nottingham Trent University. Fuhr, H., Hickmann, T., & Kern, K. (2018). The role of cities in multi-level climate governance: local climate policies and the 1.5 °C target. Current Opinion in Environmental Sustainability, 30, 1–6. https://doi.org/10.1016/j.cosust.2017.10.006 Ghisi, E., Tavares, D. da F., & Rocha, V. L. (2009). Rainwater harvesting in petrol stations in Brasília: Potential for potable water savings and investment feasibility analysis. Resources, Conservation and Recycling, 54(2), 79–85. https://doi.org/10.1016/j.resconrec.2009.06.010 Gonzalez-Vidal, A., Ramallo-Gonzalez, A. P., Terroso-Saenz, F., et al. (2017). Data driven modeling for energy consumption prediction in smart buildings. In: Proceedings of the 2017 IEEE International Conference on Big Data (Big Data). https://doi.org/10.1109/bigdata.2017.8258499 Hundecha, Y., Bardossy, A., & Werner, H. W. (2001). Development of a fuzzy logic-based rainfall-runoff model. Hydrological Sciences Journal, 46(3), 363–376. https://doi.org/10.1080/02626660109492832 Joleha, Mulyadi, A., Wawan, & Suprayogi, I. (2019a). Application of Rainwater Harvesting Technology to Supply Sustainable Domestic Water. International Journal of Electrical, Energy and Power System Engineering, 2(1), 10–14. https://doi.org/10.31258/ijeepse.2.1.10-14 Joleha, Mulyadi, A., Wawan, & Suprayogi, I. (2019b). Rainwater harvesting system for a sustainable water supply for the poor on Merbau island. MATEC Web of Conferences, 276, 04015. https://doi.org/10.1051/matecconf/201927604015 Jones, M. P., & Hunt, W. F. (2010). Performance of rainwater harvesting systems in the southeastern United States. Resources, Conservation and Recycling, 54(10), 623–629. https://doi.org/10.1016/j.resconrec.2009.11.002 Karim, Md. R., Bashar, M. Z. I., & Imteaz, M. A. (2015). Reliability and economic analysis of urban rainwater harvesting in a megacity in Bangladesh. Resources, Conservation and Recycling, 104, 61–67. https://doi.org/10.1016/j.resconrec.2015.09.010 Kim, K., & Yoo, C. (2009). Hydrological Modeling and Evaluation of Rainwater Harvesting Facilities: Case Study on Several Rainwater Harvesting Facilities in Korea. Journal of Hydrologic Engineering, 14(6), 545-561. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000030 Kojiri, T. (1988). Real Time Reservoir Operation with Infow Prediction by Using Fuzzy Inference Theory. In: Seminar on Confict Analysis in Reservoir Management, Session F. Asian Institute of Technology. Latif, S. D., Birima, A. H., Ahmed, A. N., et al. (2022). Development of prediction model for phosphate in reservoir water system based machine learning algorithms. Ain Shams Engineering Journal, 13(1), 101523. https://doi.org/10.1016/j.asej.2021.06.009 Li, L., Rong, S., Wang, R., et al. (2021). Recent advances in artificial intelligence and machine learning for nonlinear relationship analysis and process control in drinking water treatment: A review. Chemical Engineering Journal, 405, 126673. https://doi.org/10.1016/j.cej.2020.126673 Liaw, C., & Tsai, Y. (2004). Optimum storage volume of rooftop rain water harvesting systems for domestic use1. JAWRA Journal of the American Water Resources Association, 40(4), 901–912. Portico. https://doi.org/10.1111/j.1752-1688.2004.tb01054.x Lizárraga-Mendiola, L., Vázquez-Rodríguez, G., Blanco-Piñón, A., et al. (2015). Estimating the Rainwater Potential per Household in an Urban Area: Case Study in Central Mexico. Water, 7(9), 4622–4637. https://doi.org/10.3390/w7094622 Mamdani, E. H., Assilion, S. (1974). An Experiment in Linguistic Synthesis with A Fuzzy Logic Controller. Int J Man Mach Stud, 7, 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2 Meehan, K. M., & Moore, A. W. (2014). Downspout politics, upstream conflict: formalizing rainwater harvesting in the United States. Water International, 39(4), 417–430. https://doi.org/10.1080/02508060.2014.921849 Mendez, C. B., Klenzendorf, J. B., Afshar, B. R., et al. (2011). The effect of roofing material on the quality of harvested rainwater. Water Research, 45(5), 2049–2059. https://doi.org/10.1016/j.watres.2010.12.015 Mirzania, E., Vishwakarma, D. K., Bui, Q. A. T., et al. (2023). A novel hybrid AIG-SVR model for estimating daily reference evapotranspiration. Arabian Journal of Geosciences, 16(5). https://doi.org/10.1007/s12517-023-11387-0 Morales-Pinzón, T., Lurueña, R., Rieradevall, J., et al. (2012). Financial feasibility and environmental analysis of potential rainwater harvesting systems: A case study in Spain. Resources, Conservation and Recycling, 69, 130–140. https://doi.org/10.1016/j.resconrec.2012.09.014 Motsi, K. E., Chuma, E., & Mukamuri, B. B. (2004). Rainwater harvesting for sustainable agriculture in communal lands of Zimbabwe. Physics and Chemistry of the Earth, Parts A/B/C, 29(15–18), 1069–1073. https://doi.org/10.1016/j.pce.2004.08.008 Mwenge Kahinda, J., Taigbenu, A. E., & Boroto, J. R. (2007). Domestic rainwater harvesting to improve water supply in rural South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 32(15–18), 1050–1057. https://doi.org/10.1016/j.pce.2007.07.007 Nachtnebel, H. P., Hanisch, P., & Duckstein, L. (1986). Multicriterion analysis of small hydropower plants under fuzzy objectives. The Annals of Regional Science, 20(3), 86–103. https://doi.org/10.1007/bf01285810 Ng, K., Campos, I., Penha-Lopes, G. (2016). BASE Adaptation Inspiration Book: 23 European Cases of Climate Change Adaptation to Inspire European Decision-Makers, Practitioners and Citizens. Faculty of Sciences University of Lisbon. Notaro, V., Liuzzo, L., & Freni, G. (2016). Reliability Analysis of Rainwater Harvesting Systems in Southern Italy. Procedia Engineering, 162, 373–380. https://doi.org/10.1016/j.proeng.2016.11.077 Ozelkan, E. C., Duckstein, L. (2000). Multi-Objective Fuzzy Regression: a General Framework. Comput Oper Res, 27(7-8), 635-652. https://doi.org/10.1016/S0305-0548(99)00110-0 Palla, A., Gnecco, I., & Lanza, L. G. (2011). Non-dimensional design parameters and performance assessment of rainwater harvesting systems. Journal of Hydrology, 401(1–2), 65–76. https://doi.org/10.1016/j.jhydrol.2011.02.009 Palla, A., Gnecco, I., Lanza, L. G., et al. (2012). Performance analysis of domestic rainwater harvesting systems under various European climate zones. Resources, Conservation and Recycling, 62, 71–80. Practical Hydroinformatics. (2008). Water Science and Technology Library. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-79881-1 Radonic, L. (2018). When Catching the Rain: A Cultural Model Approach to Green Infrastructure in Water Governance. Human Organization, 77(2), 172–184. https://doi.org/10.17730/0018-7259-77.2.172 Roebuck, R. M., Oltean-Dumbrava, C., & Tait, S. (2011). Whole life cost performance of domestic rainwater harvesting systems in the United Kingdom. Water and Environment Journal, 25(3), 355–365. Portico. https://doi.org/10.1111/j.1747-6593.2010.00230.x Saroughi, M., Mirzania, E., Vishwakarma, D. K., et al. (2023). A Novel Hybrid Algorithms for Groundwater Level Prediction. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 47(5), 3147–3164. https://doi.org/10.1007/s40996-023-01068-z Sazakli, E., Alexopoulos, A., & Leotsinidis, M. (2007). Rainwater harvesting, quality assessment and utilization in Kefalonia Island, Greece. Water Research, 41(9), 2039–2047. https://doi.org/10.1016/j.watres.2007.01.037 Schuetze, T. (2013). Rainwater harvesting and management – policy and regulations in Germany. Water Supply, 13(2), 376–385. https://doi.org/10.2166/ws.2013.035 Shrestha, B. P., Duckstein L., Stakhiv, E. Z. (1996). Fuzzy Rule Based Modeling of Reservoir Operation. J Water Resour Plan Manag, 122(4), 262-269 https://doi.org/10.1061/(ASCE)0733-9496(1996)122:4(262) Simonovic, S. P. (1992). Reservoir Systems Analysis the Closing Gap Between Theory and Practice. J Water Resour Plan Manag, 118(3), 262-280. https://doi.org/10.1061/(ASCE)0733-9496(1992)118:3(262) Simonovic, S. P. (2008). Managing Water Resources: Methods and Tools for A Systems Approach. Routledge, 40, 157-165. Stout, D. T., Walsh, T. C., & Burian, S. J. (2015). Ecosystem services from rainwater harvesting in India. Urban Water Journal, 14(6), 561–573. https://doi.org/10.1080/1573062x.2015.1049280 Sugeno, M., & Yasukawa, T. (1993). A fuzzy-logic-based approach to qualitative modeling. IEEE Transactions on Fuzzy Systems, 1(1), 7. https://doi.org/10.1109/tfuzz.1993.390281 Taffere, G. R., Beyene, A., Vuai, S. A. H., et al. (2016). Reliability analysis of roof rainwater harvesting systems in a semi-arid region of sub-Saharan Africa: case study of Mekelle, Ethiopia. Hydrological Sciences Journal, 61(6), 1135–1140. https://doi.org/10.1080/02626667.2015.1061195 Teegavarapu, R. S. V., & Simonovic, S. P. (1999). Modeling uncertainty in reservoir loss functions using fuzzy sets. Water Resources Research, 35(9), 2815–2823. Portico. https://doi.org/10.1029/1999wr900165 Utami, D. Y. P. (2024). Analysis of Household Scale Rainwater Harvesting Buildings to Fulfill Clean Water Needs in Coastal Areas Using Fuzzy Logic [Master’s thesis]. Riau University. Van der Sterren, M., Rahman, A., & Dennis, G. R. (2013). Quality and Quantity Monitoring of Five Rainwater Tanks in Western Sydney, Australia. Journal of Environmental Engineering, 139(3), 332-340. https://doi.org/10.1061/(ASCE)EE.1943-7870.0000614 Verschuren, D., Laird, K. R., & Cumming, B. F. (2000). Rainfall and drought in equatorial east Africa during the past 1,100 years. Nature, 403(6768), 410–414. https://doi.org/10.1038/35000179 Vialle, C., Sablayrolles, C., Lovera, M., et al. (2011). Monitoring of water quality from roof runoff: Interpretation using multivariate analysis. Water Research, 45(12), 3765–3775. https://doi.org/10.1016/j.watres.2011.04.029 Villarreal, E. L., & Dixon, A. (2005). Analysis of a rainwater collection system for domestic water supply in Ringdansen, Norrköping, Sweden. Building and Environment, 40(9), 1174–1184. https://doi.org/10.1016/j.buildenv.2004.10.018 Walker, B. J., Adger, W. N., & Russel, D. (2014). Institutional barriers to climate change adaptation in decentralised governance structures: Transport planning in England. Urban Studies, 52(12), 2250–2266. https://doi.org/10.1177/0042098014544759 Wang, L. X., & Mendel, J. M. (1992). Generating fuzzy rules by learning from examples. IEEE Transactions on Systems, Man, and Cybernetics, 22(6), 1414–1427. https://doi.org/10.1109/21.199466 Ward, S., Memon, F. A., & Butler, D. (2012). Performance of a large building rainwater harvesting system. Water Research, 46(16), 5127–5134. https://doi.org/10.1016/j.watres.2012.06.043 Woltersdorf, L., Liehr, S., & Döll, P. (2015). Rainwater Harvesting for Small-Holder Horticulture in Namibia: Design of Garden Variants and Assessment of Climate Change Impacts and Adaptation. Water, 7(4), 1402–1421. https://doi.org/10.3390/w7041402 Zadeh, L. A. (1965). Fuzzy Sets. Int J Inf Control, 8, 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X



DOI: https://doi.org/10.24294/jipd.v8i11.8754

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Imam Suprayogi, Manyuk Fauzi, Nurdin Nurdin, Fakhri Fakhri, Dian Yustika Putri Utami, Yenita Morena, Safridatul Audah, Ermiyati Ermiyati, Mubarak Mubarak

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.