Tech titans: Generation Z’s role in the FinTech evolution
Vol 8, Issue 10, 2024
VIEWS - 1914 (Abstract)
Abstract
The accessibility of FinTech services is increasing, and their convenience is making them more popular than traditional banks, particularly among Generation Z. The objective of this research is to identify and compare the factors influencing the conscious use of FinTech services among Generation Z members, who are the most active participants in this field of financial technology. The questionnaire based purposive sample consisted of Generation Z students who demonstrated adequate financial literacy and utilized FinTech, and who were learning in a university environment in Hungary and Romania. A sample of 600 respondents was selected for analysis after cleaning the data online. The methodological approach entailed the utilization of covariance-based structural equation modeling (CB-SEM). The results indicate that social influence (β = 0.18), consumer attitude (β = 0.53) and facilitating conditions intention (β = 0.11) all have a significant effect on the behavior intention, explaining 49% of the variance. In the context of performance expectation, the effect of facilitating conditions intention is not significant (p = 0.491). The motivation of Generation Z towards fintech solutions is evident in their preference for speed and ease of use. However, in order to reinforce consumer expectations and transfer the necessary experience and attitudes, it may be beneficial for service providers to adopt a partially different strategy in different countries. Generation Z can thus serve as a crucial reference point for the even more discerning expectations of subsequent generations. The findings may inform the formulation of strategies for fintech service providers to better understand customer behavior.
Keywords
Full Text:
PDFReferences
- Akinwale, Y. O., & Kyari, A. K. (2020). Factors influencing attitudes and intention to adopt financial technology services among the end-users in Lagos State, Nigeria. African Journal of Science, Technology, Innovation and Development, 14(1), 272–279. https://doi.org/10.1080/20421338.2020.1835177
- Akinwande, M. O., Dikko, H. G., & Gulumbe, S. U. (2015). Identifying the Limitation of Stepwise Selection for Variable Selection in Regression Analysis. American Journal of Theoretical and Applied Statistics, 4(5), 414. https://doi.org/10.11648/j.ajtas.20150405.22
- Alalwan, A. A., Dwivedi, Y. K., & Rana, N. P. (2017). Factors influencing adoption of mobile banking by Jordanian bank customers: Extending UTAUT2 with trust. International Journal of Information Management, 37(3), 99–110. https://doi.org/10.1016/j.ijinfomgt.2017.01.002
- Algina, J., & Moulder, B. C. (2001). A note on estimating the Jöreskog-Yang model for latent variable interaction using LISREL 8.3. Struct. Equ. Model. Multidiscip. J., 8 (1), 40-52. https://www.doi.org/10.1207/S15328007SEM0801_3
- Alkhwaldi, A. F., Alharasis, E. E., Shehadeh, M., et al. (2022). Towards an Understanding of FinTech Users’ Adoption: Intention and e-Loyalty Post-COVID-19 from a Developing Country Perspective. Sustainability, 14(19), 12616. https://doi.org/10.3390/su141912616
- Allport, F. (1924). Social psychology. New York: Houghton Mifflin, 4(5), 242–52.
- Amnas, M. B., Selvam, M., Raja, M., et al. (2023). Understanding the Determinants of FinTech Adoption: Integrating UTAUT2 with Trust Theoretic Model. Journal of Risk and Financial Management, 16(12), 505. https://doi.org/10.3390/jrfm16120505
- Antwi-Boampong, A., Boison, D., Doumbia, M., et al. (2022). Factors Affecting Port Users’ Behavioral Intentions to Adopt Financial Technology (Fintech) in Ports in Sub-Saharan Africa: A Case of Ports in Ghana. FinTech, 1(4), 362–375. https://doi.org/10.3390/fintech1040027
- Aseng, A. C. (2020). Factors Influencing Generation Z Intention in Using FinTech Digital Payment Services. CogITo Smart Journal, 6(2), 155–166. https://doi.org/10.31154/cogito.v6i2.260.155-166
- Asif, M., Khan, M. N., Tiwari, S., et al. (2023). The Impact of Fintech and Digital Financial Services on Financial Inclusion in India. Journal of Risk and Financial Management, 16(2), 122. https://doi.org/10.3390/jrfm16020122
- Assensoh-Kodua, A. (2023). Fintech: Controversies and Complexities around Device Size for Mobile Banking. In: Proceedings of the 7th International Conference on Applied Research in Management, Economics and Accounting. https://doi.org/10.33422/7th.iarmea.2023.07.126
- Ateş, S., & Altuner Çoban, G. Ş. (2022). A Validity and Reliability Study on Developing a Scale for Assessing Classroom Teachers’ Attitudes Towards Illustrated Children’s Books. Educational Policy Analysis and Strategic Research, 17(3), 222–237. https://doi.org/10.29329/epasr.2022.461.11
- Athiyaman, A. (2002). Internet users’ intention to purchase air travel online: an empirical investigation. Marketing Intelligence & Planning, 20(4), 234–242. https://doi.org/10.1108/02634500210431630
- Bajunaied, K., Hussin, N., & Kamarudin, S. (2023). Behavioral intention to adopt FinTech services: An extension of unified theory of acceptance and use of technology. Journal of Open Innovation: Technology, Market, and Complexity, 9(1), 100010. https://doi.org/10.1016/j.joitmc.2023.100010
- Campino, J., Brochado, A., & Rosa, Á. (2021). Digital Business Transformation in the Banking Sector. Research Anthology on Concepts, Applications, and Challenges of FinTech, 186–215. https://doi.org/10.4018/978-1-7998-8546-7.ch012
- Chang, S. E., Shen, W. C., & Yeh, C. H. (2017). A Comparative Study of User Intention to Recommend Content on Mobile Social Networks. Multimedia Tools and Applications, 76(4), 5399-5417. https://doi.org/10.1007/s11042-016-3966-1
- Cheah, J.-H., Memon, M. A., Richard, J. E., et al. (2020). CB-SEM Latent Interaction: Unconstrained and Orthogonalized Approaches. Australasian Marketing Journal, 28(4), 218–234. https://doi.org/10.1016/j.ausmj.2020.04.005
- Chen, S., Doerr, S., Frost, J., et al. (2023). The fintech gender gap. Journal of Financial Intermediation, 54, 101026. https://doi.org/10.1016/j.jfi.2023.101026
- Chen, X., Yu, H., & Yu, F. (2015). What is the optimal number of response alternatives for rating scales? From an information processing perspective. Journal of Marketing Analytics, 3(2), 69–78. https://doi.org/10.1057/jma.2015.4
- Cruz-Jesus, F., Oliveira, T., Bacao, F., et al. (2016). Assessing the pattern between economic and digital development of countries. Information Systems Frontiers, 19(4), 835–854. https://doi.org/10.1007/s10796-016-9634-1
- Dash, G., & Paul, J. (2021). CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technological Forecasting and Social Change, 173, 121092. https://doi.org/10.1016/j.techfore.2021.121092
- Davcik, N. S. (2014). The use and misuse of structural equation modeling in management research. Journal of Advances in Management Research, 11(1), 47–81. https://doi.org/10.1108/jamr-07-2013-0043
- Diamantopoulos, A., & Siguaw, J. (2000). Introducing LISREL. SAGE Publications, Ltd. https://doi.org/10.4135/9781849209359
- Dick, A. S., & Basu, K. (1994). Customer Loyalty: Toward an Integrated Conceptual Framework. Journal of the Academy of Marketing Science, 22(2), 99–113. https://doi.org/10.1177/0092070394222001
- Djamaly, M. F. (2023). The Rola of Social Media in Generation Z Decision-Making Process to Watch Films in Cinemas. Journal Ekonomi, 12(2), 1201-1207.
- Dospinescu, O., Dospinescu, N., & Agheorghiesei, D. T. (2021). FinTech Services and Factors Determining the Expected Benefits of Users: Evidence in Romania for Millennials and Generation Z. E+M Ekonomie a Management, 24(2), 101–118. https://doi.org/10.15240/tul/001/2021-2-007
- Drăgan, M., Horeczki, R., & Munteanu, G. (2024). Ready for the Digital Era? A Comparative Analysis of Hungary and Romania in the Field of Digital Policy. Journal of Settlements and Spatial Planning, 15(1), 39–55. https://doi.org/10.24193/jssp.2024.1.04
- Elsaman, H., Dayanandan, R., Dawood, Z., et al. (2024). Navigating fintech innovation: Performance, trust, and risk factors in UAE’s banking sector. Journal of Eastern European and Central Asian Research (JEECAR), 11(2), 332–341. https://doi.org/10.15549/jeecar.v11i2.1569
- Frare, A. B., Fernandes, C. M. G., Santos, M. C. dos, & Quintana, A. C. (2023). Determinants of Intention to Use Fintechs Services by Accounting Students: A Mixed Methods Approach. Brazilian Business Review, 20(5), 580–599. https://doi.org/10.15728/bbr.2021.1059.en
- Gelencsér, M., Kőmüves, Z. S., Hollósy-Vadász, G., et al. (2024). Modelling employee retention in small and medium-sized enterprises and large enterprises in a dynamically changing business environment. International Journal of Organizational Analysis. https://doi.org/10.1108/ijoa-09-2023-3961
- George, D., & Mallery, M. (2010). SPSS for Windows Step by Step: A Simple Guide and Reference, 17.0 update (10th edition). Pearson, Boston.
- Gopal, S., Gupta, P., & Minocha, A. (2023). Advancements in Fin-Tech and Security Challenges of Banking Industry. 2023 4th International Conference on Intelligent Engineering and Management (ICIEM), 12, 1–6. https://doi.org/10.1109/iciem59379.2023.10165876
- Gubik, A. S., Farkas, S., & Kása, R. (2018). Applying the theory of planned behaviour to explain the evolution of entrepreneurial propensity (Hungarian). Közgazdasági Szemle, 65(01), 74–101. https://doi.org/10.18414/ksz.2018.1.74
- Habing, B. (2003). Exploratory Factor Analysis. University of South Carolina, Columbia.
- Haenlein, M., & Kaplan, A. M. (2004). A Beginner’s Guide to Partial Least Squares Analysis. Understanding Statistics, 3(4), 283-297.
- Hair Jr., J. F., Gabriel, M. L. D. da S., et al. (2014). Covariance-Based Structural Equation Modeling (CB-SEM) with AMOS: Guidance on its application as a Marketing Research Tool (Portuguese). Revista Brasileira de Marketing, 13(2), 44–55. https://doi.org/10.5585/remark.v13i2.2718
- Hair, J. F., Black, W. C., Babin, B. J., et al. (2010). Multivariate Data Analysis, 7th ed. Prentice Hall, New Jersey.
- Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2017). A primer on partial least squares structural equation modeling (PLS-SEM), 2nd ed. Sage, New York.
- Hair, J. F., Hult, G. T. M., Ringle, C., et al. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM). Sage, New York.
- Harman, H. H. (1960). Modern factor analysis. University of Chicago Press, Chicago.
- Hewstone, M., & Martin, R. (2008). Social Influence. In: Hewstone, M., Strobe, W., Joans, K. (editors). Introduction to social psychology. Blackwell. Chichester. 216-243.
- Hoque, M. Z., Chowdhury, N. J., Hossain, A. A., et al. (2024). Social and facilitating influences in fintech user intention and the fintech gender gap. Heliyon, 10(1), e23457. https://doi.org/10.1016/j.heliyon.2023.e23457
- Howe, N., & Strauss, W. (2000). Millennials Rising: The Next Great Generation. Vintage Books, New York.
- Hutabarat, Z, Suryawan, I. N., Andrew, R, Akwila, F. P. (2021). Effect Of Performance Expectancy and Social Influence on Continuance Intention In OVO. Jurnal Manajemen, 25(1), 125. https://doi.org/10.24912/jm.v25i1.707
- Igamo, A. M., Rachmat, R. A., Siregar, M. I., et al. (2024). Factors influencing Fintech adoption for women in the post-Covid-19 pandemic. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100236. https://doi.org/10.1016/j.joitmc.2024.100236
- Jihane, T., & Aziz, M. (2022). Banks and FinTech Relationship in a Digital Transformation Context. European Scientific Journal, ESJ, 18(12), 106. https://doi.org/10.19044/esj.2022.v18n12p106
- Kálmán, B. G., & Grotte, J. K. (2023). The Impact of Travel and Tourism Sustainability on a Country’s Image and as the Most Important Factor in the Global Competitive Index: Building Brands Based on Fogel, Schultz, and Schumpeter. Sustainability, 15(22), 15797. https://doi.org/10.3390/su152215797
- Kézai, P. K., & Kurucz, A. (2023). Crisis Resilience of Startup Companies (The Case of Hungary among the Visegrad Countries with a Focus on the Pandemic). Sustainability, 15(9), 7108. https://doi.org/10.3390/su15097108
- Kézai, P. K., & Skala, A. (2024). Remarks on the location theories of startups: A case study on the Visegrad countries. Regional Science Policy & Practice, 16(9), 100063. https://doi.org/10.1016/j.rspp.2024.100063
- Kini, A. N., Savitha, B., & Hawaldar, I. T. (2024). Brand loyalty in FinTech services: The role of self-concept, customer engagement behavior and self-brand connection. Journal of Open Innovation: Technology, Market, and Complexity, 10(1), 100240. https://doi.org/10.1016/j.joitmc.2024.100240
- Kireyeva, A. A., Kredina, A., Vasa, L., et al. (2021). Impact of financial technologies on economic development: Theories, methods and analysis. Journal of International Studies, 14(4), 286-303.
- Koloseni, D., & Mandari, H. (2024). Expediting financial inclusion in Tanzania using FinTech: the perspective of diffusion of innovation theory. Technological Sustainability, 3(2), 171–194. https://doi.org/10.1108/techs-11-2023-0048
- Koranteng, B., & You, K. (2024). Fintech and financial stability: Evidence from spatial analysis for 25 countries. Journal of International Financial Markets, Institutions and Money, 93, 102002. https://doi.org/10.1016/j.intfin.2024.102002
- Kovács, G., & Vinkóczi, T. (2020). Spatial analysis of the impact of digitalisation and modernisation of banking services in the European Union (Hungarian). Külgazdaság, 64(11–12), 33–69. https://doi.org/10.47630/kulg.2020.64.11-12.33
- Kovács, G., & Vinkóczi, T. (2022). An Analysis of digitalisation in the context of banking services in the European Union, 2017–2018 (Hungarian). Területi Statisztika, 62(1), 35–58. https://doi.org/10.15196/ts620102
- Kowalewski, O., & Pisany, P. (2020). The Rise of Fintech: A Cross-Country Perspective. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.3624456
- Lian, S. B., & Yoong, L. C. (2023). Customers’ Satisfaction and Continuance Intention to Adopt Fintech Services. Fintech and Cryptocurrency, 105–135. Portico. https://doi.org/10.1002/9781119905028.ch6
- Little, T. D., Bovaird, J. A., & Widaman, K. F. (2006). On the merits of orthogonalizing powered and product terms: Implications for modeling interactions among latent variables. Struct. Equ. Model.: Multidiscip. J., 13 (4), 497-519.
- Lopez, E. N. B., & Abadiano, M. N. (2023). Understanding Generation Z, the New Generation of Learners: A Technological-Motivational-Learning Theory. Journal of Harbin Engineering University, 44(10), 770-784.
- Mahmud, K., Joarder, Md. M. A., & Sakib, K. (1975). Fintech ecosystem across developing countries: cross-country exploratory comparison. Journal of Business Administration, 43(2). https://doi.org/10.58964/jbaart06
- Marsh, H. W., & Craven, R. G. (2006). Reciprocal effects of self-concept and performance from a multidimensional perspective: Beyond seductive pleasure and unidimensional perspectives. Perspect. Psychol. Sci., 1 (2), 133-163.
- Marsh, H. W., & Hau, K.-T. (1996). Assessing Goodness of Fit. The Journal of Experimental Education, 64(4), 364–390. https://doi.org/10.1080/00220973.1996.10806604
- Marsh, H. W., Wen, Z., Hau, K.-T., et al. (2007). Unconstrained Structural Equation Models of Latent Interactions: Contrasting Residual- and Mean-Centered Approaches. Structural Equation Modeling: A Multidisciplinary Journal, 14(4), 570–580. https://doi.org/10.1080/10705510701303921
- McDonald, R. P., & Ho, M.-H. R. (2002). Principles and practice in reporting structural equation analyses. Psychological Methods, 7(1), 64–82. https://doi.org/10.1037/1082-989x.7.1.64
- Mulaik, S. A., James, L. R., Van Alstine, J., et al. (1989). Evaluation of goodness-of-fit indices for structural equation models. Psychological Bulletin, 105(3), 430–445. https://doi.org/10.1037/0033-2909.105.3.430
- Münnich Á., & Hidegkuti I. (2012). Models of structural equations: examining causality and complex theories in psychological research (Hungarian). Alkalmazott Pszichológia, 1, 77-102.
- Nathan, R. J., Setiawan, B., & Quynh, M. N. (2022). Fintech and Financial Health in Vietnam during the COVID-19 Pandemic: In-Depth Descriptive Analysis. Journal of Risk and Financial Management, 15(3), 125. https://doi.org/10.3390/jrfm15030125
- Nguyen, T. A., Dick, M., Nguyen, B. T. T., et al. (2022). The Effect of Culture on Performance Expectancy, Intention, and Trust in Mobile Payment Adoption. International Journal of E-Services and Mobile Applications, 14(1), 1–16. https://doi.org/10.4018/ijesma.285546
- Nugroho, M. A., & Novitasari, B. T. (2023). Fintech Risks and Continuance to use on Generation Z. International Journal of Professional Business Review, 8(6), e0541. https://www.doi.org/10.26668/businessreview/2023.v8i6.541
- Nunnally, J. C. (1978). Psychometric testing, 2nd ed. McGraw-Hill, New York.
- Olçum, G., & Gülova, A. A. (2023). Digitalization and Generation Z: Advantages and Disadvantages of Digitalization. In: Akkaya, B., Tabak, A. (editors). Two Faces of Digital Transformation, Emerald Publishing Limited, Leeds, 31-46. https://doi.org/10.1108/978-1-83753-096-020231003
- Omar, Q., Yap, C. S., Ho, P. L., et al. (2021). Predictors of behavioral intention to adopt e-AgriFinance app among the farmers in Sarawak, Malaysia. British Food Journal, 124(1), 239–254. https://doi.org/10.1108/bfj-04-2021-0449
- Pagel, M., Olafsson, A., & Carlin, B. I. (2019). Fintech and Consumer Financial Well-Being in the Information Age. Available online: https://api.semanticscholar.org/CorpusID:209442841 (accessed on 3 May 2024).
- Pakhnenko, O., Rubanov, P., Hacar, D., et al. (2021). Digitalization of financial services in European countries: Evaluation and comparative analysis. Journal of International Studies, 14(2), 267–282. https://doi.org/10.14254/2071-8330.2021/14-2/17
- Pirani, S. A. (2024). Navigating the complexity of sample size determination for robust and reliable results. International Journal of Multidisciplinary Research & Reviews, 3(2), 73–86. https://doi.org/10.56815/ijmrr.v3i2.2024/73-86
- Poyda-Nosyk, N., Kálmán, B. G., & Taylor, R. K. (2022). Financial Literacy in Ukraine and Hungary with special regard to the Performance of University Students. Pacific Business Review International, 15(2), 71-85.
- Rahi, S., Abd. Ghani, M., & MI Alnaser, F. (2017). Predicting customer’s intentions to use internet banking: the role of technology acceptance model (TAM) in e-banking. Management Science Letters, 513–524. https://doi.org/10.5267/j.msl.2017.8.004
- Reddy, L. S., & Kulshrestha, P. (2019). Performing the KMO and Bartlett’s Test for Factors Estimating the Warehouse Efficiency, Inventory and Customer Contentment for E-retail Supply Chain. Int. J. Res. Eng. Appl. Manag., 5(9), 1-13.
- Ritter, N. L. (2012). A comparison of distribution free and no distribution free factor analysis methods. Available online: https://www.researchgate.net/publication/291828129_A_comparison_of_distribution-free_and_non-distribution_free_methods_in_factor_analysis (accessed on 3 May 2024).
- Rizkalla, N., Tannady, H., & Bernando, R. (2024). Analysis of the influence of performance expectancy, effort expectancy, social influence, and attitude toward behavior on intention to adopt live.on. Multidisciplinary Reviews, 6, 2023spe017. https://doi.org/10.31893/multirev.2023spe017
- Romānova, I., & Kudinska, M. (2016). Banking and Fintech: A Challenge or Opportunity? Contemporary Studies in Economic and Financial Analysis, 21–35. https://doi.org/10.1108/s1569-375920160000098002
- Rushda, M. U. F., & Nawarathna, L. S. (2021). The Impact and Usage of Smartphone among Generation Z: A Study Based on Data Mining Techniques. Explainable Artificial Intelligence for Smart Cities, 47–63. https://doi.org/10.1201/9781003172772-4
- Saksonova, S., & Kuzmina-Merlino, I. (2017). Fintech as Financial Innovation - The Possibilities and Problems of Implementation. European research studies journal, 961–973. https://doi.org/10.35808/ersj/757
- Saris, W. E., & Stronkhorst, H. (1984). Causal modelling in nonexperimental research. Sociometric Research Foundation, Amsterdam. Available online: https://real.mtak.hu/72091/1/05_S_Gubik_FarkasKasa_u.pdf (accessed on 3 May 2024).
- Schreiber, J. B., Nora, A., Stage, F. K., et al. (2006). Reporting Structural Equation Modeling and Confirmatory Factor Analysis Results: A Review. The Journal of Educational Research, 99(6), 323–338. https://doi.org/10.3200/joer.99.6.323-338
- Sharma, V., Jangir, K., Gupta, M., et al. (2024). Does service quality matter in FinTech payment services? An integrated SERVQUAL and TAM approach. International Journal of Information Management Data Insights, 4(2), 100252. https://doi.org/10.1016/j.jjimei.2024.100252
- Shirowzhan, S., Sepasgozar, S. M. E., Edwards, D. J., et al. (2020). BIM compatibility and its differentiation with interoperability challenges as an innovation factor. Automation in Construction, 112, 103086. https://doi.org/10.1016/j.autcon.2020.103086
- Shtembari, E., & Elgün, R. F. (2023). Generation Z “Life Skills” Acquired and Enhanced through Internships before and during COVID-19 Pandemic. Administrative Sciences, 13(2), 38. https://doi.org/10.3390/admsci13020038
- Shuhaiber, A. (2016). How Facilitating Conditions Impact Students’ Intention to Use Virtual Lectures? An Empirical Evidence. In: Borcoci, E., Daimi, K., Atmaca, T. (editors). AICT 2016: The Twelfth Advanced International Conference on Telecommunications. IARIA Press. Wilmington. 68-75.
- Siposné, N. E., & Zsidó, K. E. (2023). The Effects of Crises on the Living Standards in Romania and Hungary in the 21st Century – Similarities and Differences. Acta Marisiensis. Seria Oeconomica, 17(1), 69–82. https://doi.org/10.2478/amso-2023-0006
- Siswanto, T., Shofiati, R., & Hartini, H. (2018). Acceptance and Utilization of Technology (UTAUT) as a Method of Technology Acceptance Model of Mitigation Disaster Website. IOP Conference Series: Earth and Environmental Science, 106, 012011. https://doi.org/10.1088/1755-1315/106/1/012011
- Sultana, N., Chowdhury, R. S., & Haque, A. (2023). Gravitating towards Fintech: A study on Undergraduates using extended UTAUT model. Heliyon, 9(10), e20731. https://doi.org/10.1016/j.heliyon.2023.e20731
- Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics, 5th ed. Allyn and Bacon, Boston.
- Ton, D. A., Hammerl, L., Weber, D., et al. (2022). Why leaders are important for cross-functional teams: Moderating role of supportive leadership on knowledge hiding. Problems and Perspectives in Management, 20(3), 178-191.
- Triandis, H. C. (1980). Beliefs, Attitudes and Values. University of Nebraska Press. Nebraska.
- Tunn, V. S. C., van den Hende, E. A., Bocken, N. M. P., et al. (2020). Digitalised product-service systems: Effects on consumers’ attitudes and experiences. Resources, Conservation and Recycling, 162, 105045. https://doi.org/10.1016/j.resconrec.2020.105045
- Utomo, P., Kurniasari, F., & Purnamaningsih, P. (2021). The Effects of Performance Expectancy, Effort Expectancy, Facilitating Condition, and Habit on Behavior Intention in Using Mobile Healthcare Application. International Journal of Community Service & Engagement, 2(4), 183–197. https://doi.org/10.47747/ijcse.v2i4.529
- Varga, D. (2017). Fintech, the new era of financial services. Vezetéstudomány/Budapest Management Review, 48(11), 22–32. https://doi.org/10.14267/veztud.2017.11.03
- Venkatesh, V., Morris, M. G., Davis, G. B., Davis, F. D., (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425. https://doi.org/10.2307/30036540
- Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157. https://doi.org/10.2307/41410412
- Wang, F. (2014). Explaining the low utilization of government websites: Using a grounded theory approach. Government Information Quarterly, 31(4), 610–621. https://doi.org/10.1016/j.giq.2014.04.004
- Wang, X., Joyce, N., & Namkoong, K. (2020). Investigating College Students’ Intentions to Seek Online Counseling Services. Communication Studies, 71(4), 550–567. https://doi.org/10.1080/10510974.2020.1750448
- Wei, L., Wang, X., Wang, T., et al. (2023). Recommendation Systems for the Metaverse. Blockchains, 1(1), 19–33. https://doi.org/10.3390/blockchains1010003
- Wheaton, B., Muthen, B., Alwin, D. F., et al. (1977). Assessing Reliability and Stability in Panel Models. Sociological Methodology, 8, 84. https://doi.org/10.2307/270754
- Wibowo, N. A. P., & Sobari, N. (2023). The influence of behavioral intention, facilitating condition, and habit on use behavioral of QRIS: a study on mobile banking services. Gema Wiralodra, 14(3), 1243–1258. https://doi.org/10.31943/gw.v14i3.482
- Windasari, N. A., Kusumawati, N., Larasati, N., et al. (2022). Digital-only banking experience: Insights from gen Y and gen Z. Journal of Innovation & Knowledge, 7(2), 100170. https://doi.org/10.1016/j.jik.2022.100170
- Wood, W., Lundgren, S., Ouellette, J. A., et al. (1994). Minority influence: A meta-analytic review of social influence processes. Psychological Bulletin, 115(3), 323–345. https://doi.org/10.1037/0033-2909.115.3.323
- Yang, K., & Forney, J. C. (2013). The Moderating Role of Consumer Technology Anxiety in Mobile Shopping. Journal of Electronic Commerce Research, 14(4), 334-347.
- Yee‐Loong Chong, A., Ooi, K., Lin, B., et al. (2010). Online banking adoption: an empirical analysis. International Journal of Bank Marketing, 28(4), 267–287. https://doi.org/10.1108/02652321011054963
- Zarco, C., Giráldez-Cru, J., Cordón, O., et al. (2024). A comprehensive view of biometric payment in retailing: A complete study from user to expert. Journal of Retailing and Consumer Services, 79, 103789. https://doi.org/10.1016/j.jretconser.2024.103789
- Zihan, Y., Yihan, L., & Yinwen, T. (2023). The Development and Impact of FinTech in the Digital Economy. Economics. https://doi.org/10.11648/j.eco.20231201.13
DOI: https://doi.org/10.24294/jipd.v8i10.8201
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Tamás Vinkóczi, Ewelina Idziak, Borbála Tamás, Attila Kurucz
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.