Application of predictive artificial intelligence (AI) models to estimate the success of crowdfunding: Metaheuristic feature selection
Vol 8, Issue 16, 2024
Abstract
This research presents a novel approach utilizing a self-enhanced chimp optimization algorithm (COA) for feature selection in crowdfunding success prediction models, which offers significant improvements over existing methods. By focusing on reducing feature redundancy and improving prediction accuracy, this study introduces an innovative technique that enhances the efficiency of machine learning models used in crowdfunding. The results from this study could have a meaningful impact on how crowdfunding campaigns are designed and evaluated, offering new strategies for creators and investors to increase the likelihood of campaign success in a rapidly evolving digital funding landscape.
Keywords
Full Text:
PDFReferences
Bernardino, S., & Santos, J. F. (2020). The impact of rewards on crowdfunding success: A case study analysis. Journal of Innovation & Knowledge, 5(2), 121-129.
Bishla, S., & Khosla, A. (2023). Enhanced chimp optimized self-tuned FOPR controller for battery scheduling using grid and solar PV sources. Journal of Energy Storage, 66, 107403. https://doi.org/10.1016/j.est.2023.107403
Chandrashekar, G., & Sahin, F. (2014). A survey on feature selection methods. Computers & Electrical Engineering, 40(1), 16-28.
Cheng, H., Zhu, Y., & Wang, Y. (2019). Multi-modal data fusion for crowdfunding success prediction: A case study on reward-based platforms. IET Software, 13(5), 229-238. https://doi.org/10.1049/iet-sen.2019.0119
Edward, N., Raflesia, E., & Christian, S. (2023). Sharia-compliant peer-to-peer lending: A machine learning approach to investor dynamics. Journal of Intelligent Information Systems, 49(3), 47-65. https://doi.org/10.1007/s10844-022-00731-9
Etter, V., Grossglauser, M., & Thiran, P. (2013). Launch hard or go home! Predicting the success of Kickstarter campaigns. In Proceedings of the first ACM conference on Online social networks (pp. 177-182).
Fernández Martínez, J. L., & García Gonzalo, E. (2009). The PSO family: Deduction, stochastic analysis and comparison. Swarm Intelligence, 3(4), 245–273. https://doi.org/10.1007/s11721-009-0034-8
Foster, J. (2019). Crowdfunding platforms and their role in supporting creative projects. Journal of Creative Industries, 12(3), 233-245.
García, S., Luengo, J., & Herrera, F. (2019). Data preprocessing in data mining. Springer.
Greenberg, M. D., Hui, J. S., & Gerber, E. M. (2013). Crowdfunding: A resource for creative entrepreneurs. The Information Society, 29(2), 92-104.
Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection. Journal of Machine Learning Research, 3(Mar), 1157-1182.
Habibi Aghdam, H., & Jahani Heravi, E. (2017). Guide to convolutional neural networks. Springer International Publishing. https://doi.org/10.1007/978-3-319-57550-6
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735-1780.
Jenei, Sz., Módosné Szalai, Sz., Leicht, F., Molnár, S., Varga, E., & Poór, J. (2024). The workforce challenges of disabled people in Hungary and Slovakia during the COVID-19 pandemic. Alter, 18(3), 23–49. https://doi.org/10.4000/alter.6467
Jenei, Sz., & Módosné Szalai, Sz. (2021). A koronavírus járvány hatásai a humánerőforrás-menedzsment különböző területeire 2020-ban. Új Munkaügyi Szemle, 2(2), 53–64.
Jiménez-Jiménez, D., Martínez-Caro, E., & Morales, A. I. (2021). The effects of crowdfunding success on subsequent financing rounds: Evidence from equity-based campaigns. Journal of Business Research, 123, 482-489.
Kashef, S., & Nezamabadi-pour, H. (2015). An advanced ACO algorithm for feature subset selection. Neurocomputing, 147, 271–279. https://doi.org/10.1016/j.neucom.2014.06.067
Ketkar, N., & Moolayil, J. (2021). Convolutional neural networks. In N. Ketkar & J. Moolayil (Eds.), Deep learning with Python: Learn best practices of deep learning models with PyTorch (pp. 197–242). Apress. https://doi.org/10.1007/978-1-4842-5364-9_6
Khishe, M., & Mosavi, M. (2020). Chimp optimization algorithm. Expert Systems with Applications, 149, 113338. https://doi.org/10.1016/j.eswa.2020.113338
Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv preprint arXiv:1408.5882.
Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th international joint conference on artificial intelligence (Vol. 2, pp. 1137-1143).
Kramer, O. (2017). Genetic algorithms. In O. Kramer (Ed.), Genetic algorithm essentials (pp. 11–19). Springer International Publishing. https://doi.org/10.1007/978-3-319-52156-5_2
Lavin, A., & Gray, S. (2016). Fast algorithms for convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 4013–4021). https://www.cv-foundation.org/openaccess/content_cvpr_2016/html/Lavin_Fast_Algorithms_for_CVPR_2016_paper.html
McTeer, Q. (2021). Indiegogo crowdfunding campaigns [CSV]. Kaggle. https://www.kaggle.com/datasets/quentinmcteer/indiegogo-crowdfunding-data
Mehndy, A., Shamsuddin, S. M., & Yusof, R. (2020). Chimp optimization algorithm: A new metaheuristic optimizer. Journal of Computational Design and Engineering, 7(4), 390-410.
Módosné Szalai, Sz., Kálmán, B. G., Tóth, A., Gyurián, N., Singh, D. P., Dávid, L. D., & Jenei, Sz. (2025). NUTS2 regions of the Visegrad countries during the Covid-19 pandemic and recovery. Regional Statistics, 15(3), 1–21. https://doi.org/10.15196/RS150302
Mura, L., Barcziová, A., Bálintová, M., Jenei, Sz., Molnár, S., & Módosné Szalai, Sz. (2022a). The effects of the COVID-19 pandemic on unemployment in Slovakia and Hungary. Vadyba: Journal of Management, 38(1), 25–35. https://doi.org/10.38104/vadyba.2022.1.03
Mura, L., Barcziová, A., Bálintová, M., Jenei, Sz., Molnár, S., & Módosné Szalai, Sz. (2022b). Economic measures to recover the area of entrepreneurship: A comparative analysis Slovakia-Hungary. Scientific Bulletin of Uzhhorod University. Series «Economics», (2(60)), 15–26.
Musheer, Z., Aslam, M., & Akhtar, N. (2019). Metaheuristic algorithms for feature selection: A review. IEEE Access, 7, 61248-61262.
O’Shea, K., & Nash, R. (2015). An introduction to convolutional neural networks (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1511.08458
Pashaei, E., & Pashaei, E. (2022). An efficient binary chimp optimization algorithm for feature selection in biomedical data classification. Neural Computing and Applications, 34(8), 6427–6451. https://doi.org/10.1007/s00521-021-06775-0
Poór, J., Módosné Szalai, Sz., Mura, L., Jenei, Sz., Varga, E., Szira, Z., & Hollósy-Vadász, G. (2023). The impact of the pandemic on the central and regional areas of Hungary: During the economic recovery following the global virus epidemic. AD ALTA: Journal of Interdisciplinary Research, 13(2), 207–212. https://doi.org/10.33543/1302
Poór, J., Módosné Szalai, Sz., & Jenei, Sz. (2021). Responsibility of the employers and employees in Hungary: The importance of hygiene during the pandemic. Acta Oeconomica Universitatis Selye, 10(2), 85–109.
Qian, L., Khishe, M., Huang, Y., & Mirjalili, S. (2024). SEB-ChOA: An improved chimp optimization algorithm using spiral exploitation behavior. Neural Computing and Applications, 36(9), 4763–4786. https://doi.org/10.1007/s00521-023-09236-y
Ralcheva, A., & Roosenboom, P. (2020). Forecasting the success of equity crowdfunding campaigns: Logistic regression analysis. Journal of Business Venturing, 35(3), 101484. https://doi.org/10.1016/j.jbusvent.2020.101484
Ramos, J. (2003). Using TF-IDF to determine word relevance in document queries. In Proceedings of the first instructional conference on machine learning (Vol. 242, No. 1, pp. 133-142).
Remsei, S., Módosné Szalai, Sz., & Jenei, Sz. (2023). Hungarian battery production – Public opinion on sustainability, labor market, and environmental protection. Chemical Engineering Transactions, 107, 691–696. https://doi.org/10.3303/CET2317116
Ryoba, J. D., Yusuf, M. B., & Tukur, Y. G. (2020). Metaheuristics and their applications: A brief review. Journal of Computer Science and Systems Biology, 13(2), 1-6.
Samsel, A., Stemler, A. R., & Evans, D. S. (2021). The determinants of crowdfunding success: Evidence from Kickstarter. Journal of Entrepreneurship and Innovation in Emerging Economies, 7(1), 35-48.
Silva, W., Felipe, I., Leal, C.C., & Aguiar, M.O. (2020). How the tone of mass media news affects pledge amounts in reward crowdfunding campaigns. Journal of Small Business Management, 62(2), 254-267. https://doi.org/10.1080/00472778.2020.1762787
Srinivasan, S. (2017). Kickstarter campaigns dataset [Dataset]. Kaggle. https://www.kaggle.com/datasets/sripaadsrinivasan/kickstarter-campaigns-dataset
Steinmo, M., & Rasmussen, E. (2018). The interplay of motivation and funding in science-based entrepreneurship. Research Policy, 47(1), 18-32.
Testa, S., Roma, P., & Scardigno, A. F. (2020). Crowdfunding: A new opportunity for small entrepreneurial ventures. Entrepreneurship Theory and Practice, 44(5), 929-955.
Ullah, I., & Zhou, J. (2020). Crowdfunding success factors: What we know and what we need to know. Journal of Business Research, 109, 246-258.
Webrobot. (2024). Indiegogo datasets [CSV /JSON]. https://webrobots.io/indiegogo-dataset/
Xu, A., Chen, X., & Zhu, J. (2014). Factors influencing success of crowdfunding projects in China. In Pacific Asia Conference on Information Systems (PACIS).
Yuan, Q., Wang, S., Hu, M., & Zeng, L. (2024). SLDChOA: A comprehensive and competitive multi-strategy-enhanced chimp algorithm for global optimization and engineering design. The Journal of Supercomputing, 80(3), 3589–3643. https://doi.org/10.1007/s11227-023-05617-1
DOI: https://doi.org/10.24294/jipd7934
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Zoltán Zéman, Botond Géza Kálmán, Szilárd Malatyinszki
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.