China’s container freight prices on the global behavior of inflation rate after COVID-19
Vol 8, Issue 11, 2024
VIEWS - 814 (Abstract)
Abstract
The main objective of this article is to analyze the relationship between increases in freight costs and inflation in the markets due to the increases reflected in the prices of the products in some economies in destination ports such as the United States, Europe, Japan, South Africa, the United Arab Emirates, New Zealand and South Korea. We use fractionally integrated methods and Granger causality test to calculate the correlation between these indicators. The results indicate that, after a significant drop in inflation in 2020, probably due to the confinement caused by the pandemic, the increases observed in inflation and freight costs are expected to be transitory given their stationary behavior. We also find a close correlation between both indicators in Europe, the United States and South Africa.
Keywords
Full Text:
PDFReferences
- Aguiar-Conraria, L., & Soares, M. J. (2011). Oil and the macroeconomy: using wavelets to analyze old issues. Empirical Economics, 40(3), 645-655.
- Aguiar‐Conraria, L., & Soares, M. J. (2014). The continuous wavelet transform: Moving beyond uni‐and bivariate analysis. Journal of Economic Surveys, 28(2), 344-375.
- Aguiar-Conraria, L., Azevedo, N., & Soares, M. J. (2008). Using wavelets to decompose the time-frequency effects of monetary policy. Physica A: Statistical mechanics and its applications, 387(12), 2863-2878.
- Akaike, H. (1973). Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika, 60(2), 255–265. https://doi.org/10.1093/biomet/60.2.255
- Akaike, H. (1979). A Bayesian extension of the minimum AIC procedure of autoregressive model fitting. Biometrika, 66(2), 237–242. https://doi.org/10.1093/biomet/66.2.237
- Akbulaev, N., & Bayramli, G. (2020). Maritime transport and economic growth: Interconnection and influence (an example of the countriesin the Caspian sea coast; Russia, Azerbaijan, Turkmenistan, Kazakhstan and Iran). Marine Policy, 118, 104005. https://doi.org/10.1016/j.marpol.2020.104005
- Akbulaev, N., & Bayramli, G. (2020). Maritime transport and economic growth: Interconnection and influence (an example of the countriesin the Caspian sea coast; Russia, Azerbaijan, Turkmenistan, Kazakhstan and Iran). Marine Policy, 118, 104005. https://doi.org/10.1016/j.marpol.2020.104005
- Aye, S. A., & Heyns, P. S. (2017). An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mechanical Systems and Signal Processing, 84, 485-498.
- Banomyong, R. (2005). The impact of port and trade security initiatives on maritime supply-chain management. Maritime Policy & Management, 32(1), 3–13. https://doi.org/10.1080/0308883042000326102
- Baruník, J., & Dvořáková, S. (2015). An empirical model of fractionally cointegrated daily high and low stock market prices. Economic Modelling 45, 193-206.
- Başer, S., & Açık, A. (2018). Stock Market as an Indicator of Maritime Transport Demand: An Evidence from Turkey and ISTFIX Region. Kastamonu Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 20(4), 77-88.
- Beran, J. (1998). On unified model selection for stationary and nonstationary short- and long-memory autoregressive processes. Biometrika, 85(4), 921–934. https://doi.org/10.1093/biomet/85.4.921
- Bottasso, A., Conti, M., Ferrari, C., et al. (2013). The impact of port throughput on local employment: Evidence from a panel of European regions. Transport Policy, 27, 32–38. https://doi.org/10.1016/j.tranpol.2012.12.001
- Carrière-Swallow, Y., Deb, P., Furceri, D., et al. (2023). Shipping costs and inflation. Journal of International Money and Finance, 130, 102771. https://doi.org/10.1016/j.jimonfin.2022.102771
- Cheng, T. C. E., Zanjirani Farahani, R., Lai, K., et al. (2015). Sustainability in maritime supply chains: Challenges and opportunities for theory and practice. Transportation Research Part E: Logistics and Transportation Review, 78, 1–2. https://doi.org/10.1016/j.tre.2015.03.007
- Cullinane, K., & Haralambides, H. (2021). Global trends in maritime and port economics: the COVID-19 pandemic and beyond. Maritime Economics & Logistics, 23(3), 369–380. https://doi.org/10.1057/s41278-021-00196-5
- Deng, P., Lu, S., & Xiao, H. (2013). Evaluation of the relevance measure between ports and regional economy using structural equation modeling. Transport Policy, 27, 123–133. https://doi.org/10.1016/j.tranpol.2013.01.008
- Dewandaru, G., Masih, R., & Masih, A. M. M. (2016). Contagion and interdependence across Asia-Pacific equity markets: An analysis based on multi-horizon discrete and continuous wavelet transformations. International Review of Economics & Finance, 43, 363–377. https://doi.org/10.1016/j.iref.2016.01.002
- Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), 427. https://doi.org/10.2307/2286348
- Diebold, F. X., & Rudebusch, G. D. (1991). On the power of Dickey-Fuller tests against fractional alternatives, Economics Letters, 35, 155-160. https://doi.org/10.1016/0165-1765(91)90163-F
- Dolatabadi, S., Narayan, P. K., Nielsen, M. Ø., et al. (2017). Economic significance of commodity return forecasts from the fractionally cointegrated VAR model. Journal of Futures Markets, 38(2), 219–242. https://doi.org/10.1002/fut.21866
- Dolatabadi, S., Nielsen, M. Ø., & Xu, K. (2014). A Fractionally Cointegrated VAR Analysis of Price Discovery in Commodity Futures Markets. Journal of Futures Markets, 35(4), 339–356. https://doi.org/10.1002/fut.21693
- Dun, & Bradstreet. (2022). Russia-Ukraine crisis: Implications for the global economy and businesses. Available online: https://www.dnb.co.uk/perspectives/russia-ukraine-impacts-global-supply-chain.html (accessed on 10 May 2024).
- Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813. https://doi.org/10.2307/2171846
- Fawcett, S. E., & Magnan, G. M. (2004). Ten guiding principles for high-impact SCM. Business Horizons, 47(5), 67–74. https://doi.org/10.1016/j.bushor.2004.07.011
- Fuller, W. A. (1976). Introduction to Statistical Time Series. New York: JohnWiley.
- Geweke, J., & Porter‐Hudak, S. (1983). The Estimation and Application of Long Memory Time Series Models. Journal of Time Series Analysis, 4(4), 221–238. https://doi.org/10.1111/j.1467-9892.1983.tb00371.x
- Gil-Alana, L. A., & Carcel, H. (2020). A fractional cointegration var analysis of exchange rate dynamics. The North American Journal of Economics and Finance, 51, 100848. https://doi.org/10.1016/j.najef.2018.09.006
- Granger, C. (1981), Some properties of time series data and their use in econometric model specification. Journal of Econometrics, 16(1), 121-130. https://doi.org/10.1016/0304-4076(81)90079-8
- Granger, C. W. (1980). Long memory relationships and the aggregation of dynamic models. Journal of Econometrics, 14(2), 227-238. https://doi.org/10.1016/0304-4076(80)90092-5
- Granger, C. W. J., Joyeux, R. (1980). An introduction to long-memory time series models and fractional differencing. Journal of Time Series Analysis, 1, 15-29.
- Hassler, U., Wolters, J. (1994). On the power of unit root tests against fractional alternatives, Economics Letters, 45(1), 1-5. https://doi.org/10.1016/0165-1765(94)90049-3
- Heilig, L., Schwarze, S., & Voss, S. (2017). An Analysis of Digital Transformation in the History and Future of Modern Ports. In: Proceedings of the 50th Hawaii International Conference on System Sciences.
- Herriford, T., Johnson, E., Sly, N., & Lee Smith, A. (2016). How Does a Rise in International Shipping Costs Affect U.S. Inflation? Macro Bulletin, Federal Reserve Bank of Kansas City, 1-3.
- Hosking, J. R. M. (1981). Fractional differencing. Biometrika, 68(1), 165–176. https://doi.org/10.1093/biomet/68.1.165
- Jammazi, R., Ferrer, R., Jareño, F., et al. (2017). Time-varying causality between crude oil and stock markets: What can we learn from a multiscale perspective? International Review of Economics & Finance, 49, 453–483. https://doi.org/10.1016/j.iref.2017.03.007
- Johansen, S. (1995). Likelihood-Based Inference in Cointegrated Vector Autoregressive Models. Oxford University Press.
- Johansen, S. (2008). A Representation Theory for A Class of Vector Autoregressive Models for Fractional Processes. Econometric Theory, 24(3), 651–676. https://doi.org/10.1017/s0266466608080274
- Johansen, S., & Nielsen, M. O. (2010). Likelihood inference for a nonstationary fractional autoregressive model. Journal of Econometrics, 158, 51-66.
- Johansen, S., & Nielsen, M. O. (2012). Likelihood Inference for a Fractionally Cointegrated Vector Autoregressive Model. Econometrica, 80(6), 2667–2732. https://doi.org/10.3982/ecta9299
- Johansen, S., & Nielsen, M. O. (2014). The role of initial values in nonstationary fractional time series models. QED Working Paper 1300, Queen’s University.
- Jones, M. E. C., Nielsen, M. O., & Popiel, M. K. (2014). A fractionally cointegrated VAR analysis of economic voting and political support. Canadian Journal of Economics/Revue Canadienne d’économique, 47(4), 1078–1130. https://doi.org/10.1111/caje.12115
- Khan, K., & Derindere Köseoğlu, S. (2020). Is palladium price in bubble? Resources Policy, 68, 101780. https://doi.org/10.1016/j.resourpol.2020.101780
- Khurshid, A., Khan, K., Chen, Y., et al. (2023). Do green transport and mitigation technologies drive OECD countries to sustainable path? Transportation Research Part D: Transport and Environment, 118, 103669. https://doi.org/10.1016/j.trd.2023.103669
- Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 65(3), 159-178.
- Lee, D., & Schmidt, P. (1996), On the power of the KPSS test of stationarity against fractionally-integrated alternatives. Journal of Econometrics, 73(1), 285-302. https://doi.org/10.1016/0304-4076(95)01741-0
- Maciel, L. (2017). Technical analysis based on high and low stock prices forecasts: Evidence for Brazil using a fractionally cointegrated VAR model. Empirical Economics, 58(4), 1513-1540.
- McFarlane, D., Giannikas, V., & Lu, W. (2016). Intelligent logistics: Involving the customer. Computers in Industry, 81, 105–115. https://doi.org/10.1016/j.compind.2015.10.002
- Menegaki, A. N. (2019). The ARDL Method in the Energy-Growth Nexus Field; Best Implementation Strategies. Economies, 7(4), 105. https://doi.org/10.3390/economies7040105
- Mentzer, J. T., DeWitt, W., Keebler, J. S., et al. (2001). Defining Supply Chain Management. Journal of Business Logistics, 22(2), 1–25. https://doi.org/10.1002/j.2158-1592.2001.tb00001.x
- Mlambo, C. (2021). The Impact of Port Performance on Trade: The Case of Selected African States. Economies, 9(4), 135. https://doi.org/10.3390/economies9040135
- Molaris, V. A., Triantafyllopoulos, K., Papadakis, G., et al. (2021). The Effect of COVID-19 on minor dry bulk shipping: A Bayesian time series and a neural networks approach. Communications in Statistics: Case Studies, Data Analysis and Applications, 7(4), 624–638. https://doi.org/10.1080/23737484.2021.1979434
- Monge, M., & Cristóbal, E. (2021). Terrorism and the behavior of oil production and prices in OPEC. Resources Policy, 74, 102321. https://doi.org/10.1016/j.resourpol.2021.102321
- Monge, M., & Gil-Alana, L. A. (2021). Lithium industry and the U.S. crude oil prices. A fractional cointegration VAR and a Continuous Wavelet Transform analysis. Resources Policy, 72, 102040. https://doi.org/10.1016/j.resourpol.2021.102040
- Ng, S., & Perron, P. (2001). LAG Length Selection and the Construction of Unit Root Tests with Good Size and Power. Econometrica, 69(6), 1519–1554. https://doi.org/10.1111/1468-0262.00256
- Nielsen, M. Ø., & Popiel, M. K. (2018). A Matlab program and user’s guide for the fractionally cointegrated VAR model. Ontario, Canada, K7L 3N6.
- Oliveira, J. B., Lima, R. S., & Montevechi, J. A. B. (2016). Perspectives and relationships in Supply Chain Simulation: A systematic literature review. Simulation Modelling Practice and Theory, 62, 166–191. https://doi.org/10.1016/j.simpat.2016.02.001
- Phillips, P. C. B. (1987). Time Series Regression with a Unit Root. Econometrica, 55(2), 277. https://doi.org/10.2307/1913237
- Phillips, P. C. B. (1999). Discrete Fourier transforms of fractional processes. Department of Economics, University of Auckland.
- Phillips, P. C. B. (2007). Unit root log periodogram regression. Journal of Econometrics, 138(1), 104–124. https://doi.org/10.1016/j.jeconom.2006.05.017
- Phillips, P. C. B., & Perron, P. (1988). Testing for a unit root in time series regression. Biometrika, 75(2), 335–346. https://doi.org/10.1093/biomet/75.2.335
- Rashid Khan, H. U., Siddique, M., Zaman, K., et al. (2018). The impact of air transportation, railways transportation, and port container traffic on energy demand, customs duty, and economic growth: Evidence from a panel of low, middle, and high income countries. Journal of Air Transport Management, 70, 18–35. https://doi.org/10.1016/j.jairtraman.2018.04.013
- Robinson, P. M. (1994). Efficient Tests of Nonstationary Hypotheses. Journal of the American Statistical Association, 89(428), 1420–1437. https://doi.org/10.1080/01621459.1994.10476881
- Robinson, P. M. (1995a). Gaussian Semiparametric Estimation of Long Range Dependence. The Annals of Statistics, 23(5). https://doi.org/10.1214/aos/1176324317
- Robinson, P. M. (1995b). Log-Periodogram Regression of Time Series with Long Range Dependence. The Annals of Statistics, 23(3). https://doi.org/10.1214/aos/1176324636
- Sánchez, R. J., Hoffmann, J., Micco, A., et al. (2003). Port Efficiency and International Trade: Port Efficiency as a Determinant of Maritime Transport Costs. Maritime Economics & Logistics, 5(2), 199–218. https://doi.org/10.1057/palgrave.mel.9100073
- Shan, J., Yu, M., & Lee, C. Y. (2014). An empirical investigation of the seaport’s economic impact: Evidence from major ports in China. Transportation Research Part E: Logistics and Transportation Review, 69, 41–53. https://doi.org/10.1016/j.tre.2014.05.010
- Smialek, J., & Nelson, E. (2021). The world’s top central bankers see supply chain problems prolonging inflation. Available online: https://www.nytimes.com/2021/09/29/business/central-bankers-supplychains-inflation.html (accessed on 13 May 2024).
- Sowell, F. (1992). Maximum likelihood estimation of stationary univariate fractionally integrated time series models. Journal of Econometrics 53(1-3), 165-188. https://doi.org/10.1016/0304-4076(92)90084-5
- Stiglitz, J. E. (1990). Symposium on Bubbles. Journal of Economic Perspectives, 4(2), 13–18. https://doi.org/10.1257/jep.4.2.13
- Swanson, A. (2022). The world’s top central bankers see supply chain problems prolonging inflation. Available online: https://www.nytimes.com/2022/01/12/business/inflation-supply-chain.html (accessed on 15 May 2024).
- Thomson Reuters. (2023). China Containerized Freight Index. Refinitiv Eikon.
- Tiwari, A. K., Mutascu, M. I., & Albulescu, C. T. (2016). Continuous wavelet transform and rolling correlation of European stock markets. International Review of Economics & Finance, 42, 237–256. https://doi.org/10.1016/j.iref.2015.12.002
- UNCTAD. (2015). COVID-19 and Maritime Transport Impact and Responses. UNCTAD.
- Vacha, L., & Barunik, J. (2012). Co-movement of energy commodities revisited: Evidence from wavelet coherence analysis. Energy Economics, 34(1), 241-247.
- Wong, C. Y., Boon‐itt, S., & Wong, C. W. Y. (2011). The contingency effects of environmental uncertainty on the relationship between supply chain integration and operational performance. Journal of Operations Management, 29(6), 604–615. https://doi.org/10.1016/j.jom.2011.01.003
- Xu, L., Shi, J., Chen, J., et al. (2021). Estimating the effect of COVID-19 epidemic on shipping trade: An empirical analysis using panel data. Marine Policy, 133, 104768. https://doi.org/10.1016/j.marpol.2021.104768
- Yang, Y., Liu, Q., & Chang, C. H. (2023). China-Europe freight transportation under the first wave of COVID-19 pandemic and government restriction measures. Research in Transportation Economics, 97, 101251. https://doi.org/10.1016/j.retrec.2022.101251
DOI: https://doi.org/10.24294/jipd.v8i11.7407
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Manuel Monge, Ana Lazcano, Luis A. Gil-Alana
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.