Harmonizing sentiments: Analyzing user reviews of Spotify through sentiment analysis
Vol 8, Issue 9, 2024
VIEWS - 128 (Abstract) 63 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
Annur, C. M. (2023). Global Music Industry Revenue Dominated by Streaming Subscription by 2022 (Indonesian). Available online: https://databoks.katadata.co.id/datapublish/2023/03/27/pendapatan-industri-musik-global-didominasi-streaming-berlangganan-pada-2022 (accessed on 12 May 2024).
Aqlan, A. A., Manjula, B., & Lakshman Naik, R. (2019). A study of sentiment analysis: Concepts, techniques, and challenges. In: Proceedings of the International Conference on Computational Intelligence and Data Engineering. pp. 147–162. https://doi.org/10.1007/978-981-13-6459-4_16
Aufar, M., Andreswari, R., & Pramesti, D. (2020). Sentiment Analysis on YouTube Social Media Using Decision Tree and Random Forest Algorithm: A Case Study. In: Proceedings of the 2020 International Conference on Data Science and Its Applications (ICoDSA); Bandung, Indonesia. pp. 1–7. https://doi.org/10.1109/ICoDSA50139.2020.9213078
Dake, D. K., & Gyimah, E. (2023). Using sentiment analysis to evaluate qualitative students’ responses. Educ Inf Technol, 28, 4629–4647. https://doi.org/10.1007/s10639-022-11349-1
Dr. Arivoli, & Sonali (2021). Sentiment Analysis Using Support Vector Machine Based on Feature Selection and Semantic Analysis. International Research Journal of Computer Science, 8(8), 209–214. https://doi.org/10.26562/irjcs.2021.v0808.009
Drus, Z., & Khalid, H. (2019). Sentiment Analysis in social media and its application: Systematic Literature Review. Procedia Computer Science, 161, 707–714. https://doi.org/10.1016/j.procs.2019.11.174
Indulkar, Y., & Patil, A. (2021). Comparative Study of Machine Learning Algorithms for Twitter Sentiment Analysis. In: Proceedings of the 2021 International Conference on Emerging Smart Computing and Informatics (ESCI); Pune, India. pp. 295–299. https://doi.org/10.1109/ESCI50559.2021.9396925
Irawanto, I., Widodo, C., Hasanah, A., et al. (2023). Sentiment Analysis and Classification of Forest Fires in Indonesia. ILKOM Jurnal Ilmiah, 15(1), 175–185. https://doi.org/10.33096/ilkom.v15i1.1337.175-185
Kumawat, S., Yadav, I., Pahal, N., et al. (2021). Sentiment Analysis Using Language Models: A Study. In: Proceedings of the 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence). pp. 984–988. https://doi.org/10.1109/Confluence51648.2021.9377043
Liu, Y., Han, T., Ma, S., et al. (2023). Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of Large Language Models. ArXiv, arXiv.2304.01852. https://doi.org/10.48550/arXiv.2304.01852
Madyatmadja, E. D., Shinta, Susanti, D., Anggreani, F., et al. (2022). Sentiment analysis on user reviews of mutual fund applications. Journal of Computer Science, 18(10), 885–895. https://doi.org/10.3844/jcssp.2022.885.895
Madyatmadja, E. D., Sianipar, C. P. M., Wijaya, C., et al. (2023). Classifying Crowdsourced Citizen Complaints through Data Mining: Accuracy Testing of k-Nearest Neighbors, Random Forest, Support Vector Machine, and AdaBoost. Informatics, 10(4), 84. https://doi.org/10.3390/informatics10040084
Mamun, M. M. R., Sharif, O. & Hoque, M. M. (2022). Classification of Textual Sentiment Using Ensemble Technique. SN Computer Science, 3(1). https://doi.org/10.1007/s42979-021-00922-z
Muhamad, N. (2023a). Spotify Premium subscribers reach 220 million by Q2 2023 (Indonesian). Available online: https://databoks.katadata.co.id/datapublish/2023/10/11/pelanggan-spotify-premium-tembus-220-juta-pengguna-pada-kuartal-ii-2023 (accessed on 12 May 2024).
Muhamad, N. (2023b). Spotify Premium Subscription Fee Increases, Here's How Much the New Plan Costs (Indonesian). Available online: https://databoks.katadata.co.id/datapublish/2023/07/27/biaya-langganan-spotify-premium-naik-ini-harga-paket-terbarunya (accessed on 12 May 2024).
Ogundare, O., & Araya, G. (2023). Comparative Analysis of CHATGPT and the evolution of language models. ArXiv, arXiv.2304.02468. https://doi.org/10.48550/arXiv.2304.02468
Singh, N. K., Tomar, D. S., & Sangaiah, A. K. (2020). Sentiment analysis: a review and comparative analysis over social media. Journal of Ambient Intelligence and Humanized Computing, 11(1), 97–117. https://doi.org/10.1007/s12652-018-0862-8
Spotify. (2023). Adjusting Our Spotify Premium Prices. Available online: https://newsroom.spotify.com/2023-07-24/adjusting-our-spotify-premium-prices/ (accessed on 12 May 2024).
Tripathy, A., & Rath, S. (2017). Classification of Sentiment of Reviews using Supervised Machine Learning Techniques. International Journal of Rough Sets and Data Analysis, 4(1), 56–74. https://doi.org/10.4018/ijrsda.2017010104
Usha, G., & Dharmanna, L. (2021). Sentiment Analysis on Business Data using Machine Learning. In: Proceedings of the 2021 Second International Conference on Smart Technologies in Computing, Electrical and Electronics (ICSTCEE). https://doi.org/10.1109/icstcee54422.2021.9708593
Varshney, C. J., Sharma, A., & Yadav, D. P. (2020). Sentiment Analysis Using Ensemble Classification Technique. In: Proceedings of the 2020 IEEE Students Conference on Engineering & Systems (SCES); Prayagraj, India. pp. 1–6. https://doi.org/10.1109/SCES50439.2020.9236754
Velmurugan, T., Archana, M., & Latha, U. (2022). Sentiment Analysis of Customer Reviews Based Texts Using Classification Algorithms. In: Proceedings of the 8th Annual International Conference on Network and Information Systems for Computers (ICNISC); Hangzhou, China. pp. 185–191. https://doi.org/10.1109/ICNISC57059.2022.00047
Yadav, J. (2023). Sentiment Analysis on Social Media. Qeios. https://doi.org/10.32388/yf9x04
Yuan, J., Wu, Y., Lu, X., et al. (2020). Recent advances in deep learning–based sentiment analysis. Science China Technological Sciences, 63(10), 1947–1970. https://doi.org/10.1007/s11431-020-1634-3
Zhang, B. (2023). ChatGPT, an Opportunity to Understand More About Language Models. Medical Reference Services Quarterly, 42(2), 194–201. https://doi.org/10.1080/02763869.2023.2194149
Zheng, O., Abdel-Aty, M., Wang, D., et al. (2023). ChatGPT Is on the Horizon: Could a Large Language Model be Suitable for Intelligent Traffic Safety Research and Applications? ArXiv, arXiv.2303.05382. https://doi.org/10.48550/arXiv.2303.05382
DOI: https://doi.org/10.24294/jipd.v8i9.7101
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Evaristus Didik Madyatmadja, Felix, I. Gusti Ketut Edrick, Joseph William Indarto, David Jumpa Malem Sembiring
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.