Exploring public charging infrastructure development strategies with BBWM-mV integrated multi-viewpoint perspective
Vol 8, Issue 9, 2024
VIEWS - 135 (Abstract)
Abstract
To achieve the electrification of private vehicles, it is urgent to develop public charging infrastructure. However, choosing the most beneficial type of public charging infrastructure for the development of a country or region remains challenging. The municipal decision’s implementation requires considering various perspectives. An important aspect of energy development involves effectively integrating and evaluating public charging infrastructure. While car charging facilities have been thoroughly studied, motorcycle charging facilities have been neglected despite motorcycles being a vital mode of transportation in many countries. The study created a hybrid decision-making model to evaluate electric motorcycle charging infrastructure. Firstly, a framework for evaluating electric motorcycle charging infrastructure was effectively constructed through a literature survey and expert experience. Secondly, decision-makers’ opinions were gathered and integrated using Bayesian BWM to reach a group consensus. Thirdly, the performance of the alternative solutions was evaluated by exploring the gaps between them and the aspiration level through modified VIKOR. An empirical analysis was conducted using examples of regions/countries with very high rates of motorcycle ownership worldwide. Finally, comparative and sensitivity analyses were conducted to demonstrate the practicality of the proposed model. The study’s findings will aid in addressing municipal issues and achieving low-carbon development objectives in the area.
Keywords
Full Text:
PDFReferences
Agency, I. E. (2009). World energy outlook. OECD/IEA Paris.
Ahmad, A., Khan, Z. A., Saad Alam, M., et al. (2017). A Review of the Electric Vehicle Charging Techniques, Standards, Progression and Evolution of EV Technologies in Germany. Smart Science, 6(1), 36–53. https://doi.org/10.1080/23080477.2017.1420132
Akbari, M., Brenna, M., & Longo, M. (2018). Optimal Locating of Electric Vehicle Charging Stations by Application of Genetic Algorithm. Sustainability, 10(4), 1076. https://doi.org/10.3390/su10041076
Allegre, A. L., Bouscayrol, A., & Trigui, R. (2009). Influence of control strategies on battery/supercapacitor hybrid Energy Storage Systems for traction applications. 2009 IEEE Vehicle Power and Propulsion Conference. https://doi.org/10.1109/vppc.2009.5289849
Amiri, S. S., Jadid, S., & Saboori, H. (2018). Multi-objective optimum charging management of electric vehicles through battery swapping stations. Energy, 165, 549–562. https://doi.org/10.1016/j.energy.2018.09.167
Aqidawati, E. F., Ramadhan, R. A., & Sutopo, W. (2021). Charging Station Network Design for E-Motorcycle: A Case Study. In: Proceedings of the 11th Annual International Conference on Industrial Engineering and Operations Management Singapore; 7–11 March 2021.
Barisa, A., Rosa, M., & Kisele, A. (2016). Introducing Electric Mobility in Latvian Municipalities: Results of a Survey. Energy Procedia, 95, 50–57. https://doi.org/10.1016/j.egypro.2016.09.015
Campaña, M., & Inga, E. (2023). Optimal deployment of fast-charging stations for electric vehicles considering the sizing of the electrical distribution network and traffic condition. Energy Reports, 9, 5246–5268. https://doi.org/10.1016/j.egyr.2023.04.355
Chen, C., & Hua, G. (2014). A New Model for Optimal Deployment of Electric Vehicle Charging and Battery Swapping Stations. International Journal of Control and Automation, 7(5), 247–258. https://doi.org/10.14257/ijca.2014.7.5.27
Chiou, Y.-C., Wen, C.-H., Tsai, S.-H., et al. (2009). Integrated modeling of car/motorcycle ownership, type and usage for estimating energy consumption and emissions. Transportation Research Part A: Policy and Practice, 43(7), 665–684. https://doi.org/10.1016/j.tra.2009.06.002
Chiu, Y.-C., & Tzeng, G.-H. (1999). The market acceptance of electric motorcycles in Taiwan experience through a stated preference analysis. Transportation Research Part D: Transport and Environment, 4(2), 127–146. https://doi.org/10.1016/S1361-9209(99)00001-2
Christoforou, Z., de Bortoli, A., Gioldasis, C., et al. (2021). Who is using e-scooters and how? Evidence from Paris. Transportation Research Part D: Transport and Environment, 92, 102708. https://doi.org/10.1016/j.trd.2021.102708
Communications, M. O. T. A. (2022). Motor vehicle registration number. Available online: https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100&funid=a3301 (accessed on 2 July 2024).
Cong, X., Wang, L., Ma, L., et al. (2020). Exploring critical influencing factors for the site selection failure of waste-to-energy projects in China caused by the “not in my back yard” effect. Engineering, Construction and Architectural Management, 28(6), 1561–1592. https://doi.org/10.1108/ecam-12-2019-0709
Das, H. S., Rahman, M. M., Li, S., et al. (2020). Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review. Renewable and Sustainable Energy Reviews, 120, 109618. https://doi.org/10.1016/j.rser.2019.109618
Deveci, M., Erdogan, N., Pamucar, D., et al. (2023). A rough Dombi Bonferroni based approach for public charging station type selection. Applied Energy, 345, 121258. https://doi.org/10.1016/j.apenergy.2023.121258
Dong, H., & Yang, K. (2021). Application of the entropy-DEMATEL-VIKOR multicriteria decision-making method in public charging infrastructure. PLOS ONE, 16(10), e0258209. https://doi.org/10.1371/journal.pone.0258209
Eccarius, T., & Lu, C.-C. (2019). Powered two-wheelers for sustainable mobility: A review of consumer adoption of electric motorcycles. International Journal of Sustainable Transportation, 14(3), 215–231. https://doi.org/10.1080/15568318.2018.1540735
Feng, J., Xu, S. X., & Li, M. (2021). A novel multi-criteria decision-making method for selecting the site of an electric-vehicle charging station from a sustainable perspective. Sustainable Cities and Society, 65, 102623. https://doi.org/10.1016/j.scs.2020.102623
Funke, S. Á., Sprei, F., Gnann, T., et al. (2019). How much charging infrastructure do electric vehicles need? A review of the evidence and international comparison. Transportation Research Part D: Transport and Environment, 77, 224–242. https://doi.org/10.1016/j.trd.2019.10.024
Gnann, T., Funke, S., Jakobsson, N., et al. (2018). Fast charging infrastructure for electric vehicles: Today’s situation and future needs. Transportation Research Part D: Transport and Environment, 62, 314–329. https://doi.org/10.1016/j.trd.2018.03.004
Goussian, A., LeBel, F.-A., Trovão, J. P., et al. (2019). Passive hybrid energy storage system based on lithium-ion capacitor for an electric motorcycle. Journal of Energy Storage, 25, 100884. https://doi.org/10.1016/j.est.2019.100884
Greenstone, M., Nilekani, J., Pande, R., et al. (2015). Lower pollution, longer lives: life expectancy gains if India reduced particulate matter pollution. Economic and Political Weekly, 40–46.
Guerra, E. (2019). Electric vehicles, air pollution, and the motorcycle city: A stated preference survey of consumers’ willingness to adopt electric motorcycles in Solo, Indonesia. Transportation Research Part D: Transport and Environment, 68, 52–64. https://doi.org/10.1016/j.trd.2017.07.027
Hardman, S., Jenn, A., Tal, G., et al. (2018). A review of consumer preferences of and interactions with electric vehicle charging infrastructure. Transportation Research Part D: Transport and Environment, 62, 508–523. https://doi.org/10.1016/j.trd.2018.04.002
Huang, S.-W., Liou, J. J. H., Chuang, H.-H., et al. (2021). Using a Modified VIKOR Technique for Evaluating and Improving the National Healthcare System Quality. Mathematics, 9(12), 1349. https://doi.org/10.3390/math9121349
Huang, S.-W., Liou, J. J. H., Tang, W., et al. (2020). Location Selection of a Manufacturing Facility from the Perspective of Supply Chain Sustainability. Symmetry, 12(9), 1418. https://doi.org/10.3390/sym12091418
Huang, S. K., Kuo, L., & Chou, K.-L. (2018). The impacts of government policies on green utilization diffusion and social benefits – A case study of electric motorcycles in Taiwan. Energy Policy, 119, 473–486. https://doi.org/10.1016/j.enpol.2018.04.061
Huang, X., & Ge, J. (2019). Electric vehicle development in Beijing: An analysis of consumer purchase intention. Journal of Cleaner Production, 216, 361–372. https://doi.org/10.1016/j.jclepro.2019.01.231
Ibanez, F. M., Beizama Florez, A. M., Gutierrez, S., et al. (2019). Extending the Autonomy of a Battery for Electric Motorcycles. IEEE Transactions on Vehicular Technology, 68(4), 3294–3305. https://doi.org/10.1109/tvt.2019.2896901
Jones, L. R., Cherry, C. R., Vu, T. A., et al. (2013). The effect of incentives and technology on the adoption of electric motorcycles: A stated choice experiment in Vietnam. Transportation Research Part A: Policy and Practice, 57, 1–11. https://doi.org/10.1016/j.tra.2013.09.003
Kabli, M., Quddus, M. A., Nurre, S. G., et al. (2020). A stochastic programming approach for electric vehicle charging station expansion plans. International Journal of Production Economics, 220, 107461. https://doi.org/10.1016/j.ijpe.2019.07.034
Kannan, A. S. K., Balamurugan, S. A. A., & Sasikala, S. (2021). A Customized Metaheuristic Approaches for Improving Supplier Selection in Intelligent Decision Making. IEEE Access, 9, 56228–56239. https://doi.org/10.1109/access.2021.3071454
Kim, S., Na, D., Choi, Y., & Jung, H. (2021). Trends on Postal Vehicles in World-wide 10 Postal Agencies. Electronics and Telecommunications Trends, 36(3), 145–160.
Liu, H.-C., Yang, M., Zhou, M., et al. (2019). An Integrated Multi-Criteria Decision Making Approach to Location Planning of Electric Vehicle Charging Stations. IEEE Transactions on Intelligent Transportation Systems, 20(1), 362–373. https://doi.org/10.1109/tits.2018.2815680
Lo, H.-W., Liou, J. J. H., Huang, C.-N., et al. (2019). A novel failure mode and effect analysis model for machine tool risk analysis. Reliability Engineering & System Safety, 183, 173–183. https://doi.org/10.1016/j.ress.2018.11.018
Luo, M., Du, B., Klemmer, K., et al. (2022). Deployment Optimization for Shared e-Mobility Systems with Multi-Agent Deep Neural Search. IEEE Transactions on Intelligent Transportation Systems, 23(3), 2549–2560. https://doi.org/10.1109/tits.2021.3125745
Mardani, A., Zavadskas, E., Govindan, K., et al. (2016). VIKOR Technique: A Systematic Review of the State of the Art Literature on Methodologies and Applications. Sustainability, 8(1), 37. https://doi.org/10.3390/su8010037
Mehar, S., & Senouci, S. M. (2013). An optimization location scheme for electric charging stations. 2013 International Conference on Smart Communications in Network Technologies (SaCoNeT). https://doi.org/10.1109/saconet.2013.6654565
Mohammadi, M., & Rezaei, J. (2020). Bayesian best-worst method: A probabilistic group decision making model. Omega, 96, 102075. https://doi.org/10.1016/j.omega.2019.06.001
Mouli, G. R. C., Venugopal, P., & Bauer, P. (2017). Future of electric vehicle charging. 2017 International Symposium on Power Electronics (Ee). https://doi.org/10.1109/pee.2017.8171657
Quayson, M., Bai, C., Sun, L., et al. (2023). Building blockchain‐driven dynamic capabilities for developing circular supply chain: Rethinking the role of sensing, seizing, and reconfiguring. Business Strategy and the Environment, 32(7), 4821–4840. Portico. https://doi.org/10.1002/bse.3395
Rao, R., Zhang, X., Xie, J., et al. (2015). Optimizing electric vehicle users’ charging behavior in battery swapping mode. Applied Energy, 155, 547–559. https://doi.org/10.1016/j.apenergy.2015.05.125
Raqabi, Er. M., & Li, W. (2023). An Electric Vehicle Transitioning Framework for Public Fleet Planning. Transportation Research Part D: Transport and Environment, 118, 103732. https://doi.org/10.1016/j.trd.2023.103732
Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57. https://doi.org/10.1016/j.omega.2014.11.009
Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130. https://doi.org/10.1016/j.omega.2015.12.001
Rezaei, J., Kothadiya, O., Tavasszy, L., et al. (2018). Quality assessment of airline baggage handling systems using SERVQUAL and BWM. Tourism Management, 66, 85–93. https://doi.org/10.1016/j.tourman.2017.11.009
Ribeiro, R. G., Junior, J. R. C., Cota, L. P., et al. (2020). Unmanned Aerial Vehicle Location Routing Problem with Charging Stations for Belt Conveyor Inspection System in the Mining Industry. IEEE Transactions on Intelligent Transportation Systems, 21(10), 4186–4195. https://doi.org/10.1109/tits.2019.2939094
Risso, C., Cintrano, C., Toutouh, J., & Nesmachnow, S. (2021). Exact approach for electric vehicle charging infrastructure location: a real case study in málaga, spain. Ibero-American Congress of Smart Cities.
Sadrani, M., Najafi, A., Mirqasemi, R., et al. (2023). Charging strategy selection for electric bus systems: A multi-criteria decision-making approach. Applied Energy, 347, 121415. https://doi.org/10.1016/j.apenergy.2023.121415
Sandhya, P., & Nisha, G. (2022). Review of Battery Charging Methods for Electric Vehicle. In: Proceedings of the 2022 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES).
Schroeder, A., & Traber, T. (2012). The economics of fast charging infrastructure for electric vehicles. Energy Policy, 43, 136–144. https://doi.org/10.1016/j.enpol.2011.12.041
Sonar, H. C., & Kulkarni, S. D. (2021). An Integrated AHP-MABAC Approach for Electric Vehicle Selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665
Sun, B., Sun, X., Tsang, D. H. K., et al. (2019). Optimal battery purchasing and charging strategy at electric vehicle battery swap stations. European Journal of Operational Research, 279(2), 524–539. https://doi.org/10.1016/j.ejor.2019.06.019
Trappey, A. J. C., Trappey, C., Hsiao, C. T., et al. (2012). An evaluation model for low carbon island policy: The case of Taiwan’s green transportation policy. Energy Policy, 45, 510–515. https://doi.org/10.1016/j.enpol.2012.02.063
Yeung, J. S., Wong, Y. D., & Secadiningrat, J. R. (2015). Lane-harmonised passenger car equivalents for heterogeneous expressway traffic. Transportation Research Part A: Policy and Practice, 78, 361–370. https://doi.org/10.1016/j.tra.2015.06.001
Yogesh, A., & Radhakrishna, K. (2021). A review on fast wireless charging methods for Electric Vehicles. International Research Journal of Engineering and Technology, 9(8), 1821-1826.
Zhu, H., Liu, G., Zhou, M., et al. (2019). Dandelion Algorithm with Probability-Based Mutation. IEEE Access, 7, 97974–97985. https://doi.org/10.1109/access.2019.2927846
Zhu, L., Song, Q., Sheng, N., et al. (2019). Exploring the determinants of consumers’ WTB and WTP for electric motorcycles using CVM method in Macau. Energy Policy, 127, 64–72. https://doi.org/10.1016/j.enpol.2018.12.004
DOI: https://doi.org/10.24294/jipd.v8i9.6495
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Sun-Weng Huang, Yu-Hsuan Liao, Ju-Min Liao, James J. H. Liou
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.