Digitization adoption in developing countries: Investigating the factors affecting intention to use digital currency in Vietnam

Thi Thuy An Ngo, Thi Ngoc Thuy Tran, Thi Mai Xuan Bui, Nhat Quynh Le

Article ID: 5967
Vol 8, Issue 7, 2024

VIEWS - 1213 (Abstract)

Abstract


In the contemporary landscape characterized by technological advancements and a progressive economic environment, the utilization of currency has undergone a paradigm shift. Despite the growing prevalence of digital currency, its adoption among the Vietnamese population faces several challenges, including limited financial literacy, concerns over security, and resistance to change from traditional cash-based transactions. This research aims to identify these challenges and propose solutions to encourage the widespread use of digital currency in Vietnam. This research adopts a quantitative approach, utilizing Likert scale questionnaires, with a dataset of 330 records. The interrelationships among variables are analyzed using partial least squares structural equation modeling (PLS-SEM). The analysis results substantiate the viability of the research model, confirming the hypotheses. The findings demonstrate a positive relationship and the significance impact of factors such as perceived usefulness (PU), perceived ease of use (PEOU), perceived trust (PT), social influence (SI), openness to innovation (OI), and financial knowledge (FK) to intention to use digital currency (IUDC). Thereby aiming to inform policymakers, industry stakeholders, and the wider community, fostering a deeper understanding of consumer behavior and providing solutions to enhance the adoption of digital currency in the evolving landscape of digital finance.


Keywords


digital currency; intention to use; technology acceptance model (tam); social influence

Full Text:

PDF


References

  1. Acharya, A. S., Prakash, A., Saxena, P., et al. (2013). Sampling: why and how of it? Indian Journal of Medical Specialities, 4(2). https://doi.org/10.7713/ijms.2013.0032
  2. Alfansi, L., & Daulay, M. Y. I. (2021). Factor affecting the use of e-money in millennial generation: Research model UTAUT 2. Jurnal Manajemen Dan Pemasaran Jasa, 14(1), 109–122. https://doi.org/10.25105/jmpj.v14i1.8212
  3. Alharbi, A., & Sohaib, O. (2021). Technology Readiness and Cryptocurrency Adoption: PLS-SEM and Deep Learning Neural Network Analysis. IEEE Access, 9, 21388–21394. https://doi.org/10.1109/access.2021.3055785
  4. Al-Maroof, R. A. S., & Al-Emran, M. (2018). Students Acceptance of Google Classroom: An Exploratory Study using PLS-SEM Approach. International Journal of Emerging Technologies in Learning (IJET), 13(06), 112. https://doi.org/10.3991/ijet.v13i06.8275
  5. Angosto, S., García-Fernández, J., Valantine, I., et al. (2020). The Intention to Use Fitness and Physical Activity Apps: A Systematic Review. Sustainability, 12(16), 6641. https://doi.org/10.3390/su12166641
  6. Arias-Oliva, M., Pelegrín-Borondo, J., & Matías-Clavero, G. (2019). Variables Influencing Cryptocurrency Use: A Technology Acceptance Model in Spain. Frontiers in Psychology, 10. https://doi.org/10.3389/fpsyg.2019.00475
  7. Barry, M., Jan, M. T. (2018). Factors Influencing the Use of M-Commerce: An Extended Technology Acceptance Model Perspective. International Journal of Economics, Management and Accounting, 26(1), 157-183. https://doi.org/10.31436/ijema.v26i1.502
  8. Bloomenthal, A. (2023). What is electronic money or eMoney? Available online: https://www.investopedia.com/terms/e/electronic-money.asp (accessed on 6 January 2024).
  9. Bregashtian, B., & S.E., M.M., et al. (2021). The Effect of Perceived Ease of Use, Usefulness and Risk on Intention to Use the Go-Food Application in Surabaya and Sidoarjo. KnE Social Sciences. https://doi.org/10.18502/kss.v5i5.8807
  10. Çelik, Z., & Dülek, B. (2022). Investigation of consumers’ intentions to use digital currency for shopping. Dicle Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 12(23), 284–303. https://doi.org/10.53092/duiibfd.1029912
  11. Cohen, J. (2013). Statistical Power Analysis for the Behavioral Sciences. Routledge. https://doi.org/10.4324/9780203771587
  12. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. https://doi.org/10.2307/249008
  13. Do, N. H., Tham, J., Azam, S. M. F., et al. (2020). The effects of factors influencing on user behavior intention to use mobile payment: Evidence from Cambodia. International Journal of Data and Network Science, 213–224. https://doi.org/10.5267/j.ijdns.2019.12.004
  14. Dodgson, M., Gann, D., Wladawsky-Berger, I., et al. (2015). Managing Digital Money. Academy of Management Journal, 58(2), 325–333. https://doi.org/10.5465/amj.2015.4002
  15. Erwanti, N., & Prasetyani, H. (2023). Investigating Intention to Use Central Bank Digital Currency in Indonesia. Journal of Information Systems and Informatics, 5(4), 1461–1471. https://doi.org/10.51519/journalisi.v5i4.598
  16. Fahiraningrum, T. O., & Richard, R. (2020). The Analysis of Factors That Influences People Intention to Use in Electronic Money. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 8(2), 83–90. https://doi.org/10.33558/piksel.v8i2.2271
  17. Fintech News Singapore. (2020). ABD: Low financial literacy hampering fintech adoption in Vietnam. Available online: https://fintechnews.sg/45609/vietnam/abd-low-financial-literacy-hampering-fintech-adoption-in-vietnam/ (accessed on 16 January 2024).
  18. Fenwick, M., Van Uytsel, S., & Ying, B. (2020). Regulating FinTech in Asia. In: Perspectives in Law, Business and Innovation. Springer Singapore. https://doi.org/10.1007/978-981-15-5819-1
  19. Fornell, C., & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312
  20. Geisser, S. (1974). A predictive approach to the random effect model. Biometrika, 61(1), 101–107. https://doi.org/10.1093/biomet/61.1.101
  21. Gold, A. H., Malhotra, A., & Segars, A. H. (2001). Knowledge Management: An Organizational Capabilities Perspective. Journal of Management Information Systems, 18(1), 185–214. https://doi.org/10.1080/07421222.2001.11045669
  22. Hair, J. F., & Sarstedt, M. (2019). Factors versus Composites: Guidelines for Choosing the Right Structural Equation Modeling Method. Project Management Journal, 50(6), 619–624. https://doi.org/10.1177/8756972819882132
  23. Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2017). Mirror, mirror on the wall: a comparative evaluation of composite-based structural equation modeling methods. Journal of the Academy of Marketing Science, 45(5), 616–632. https://doi.org/10.1007/s11747-017-0517-x
  24. Hair, J. F., Hult, G. T. M., Ringle, C. M., et al. (2021). Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R. In Classroom Companion: Business. Springer International Publishing. https://doi.org/10.1007/978-3-030-80519-7
  25. Hair, J. F., Risher, J. J., Sarstedt, M., et al. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/ebr-11-2018-0203
  26. Hermawan, A., Gunardi, A., & Sari, L. M. (2022). Intention to Use Digital Finance MSMEs: The Impact of Financial Literacy and Financial Inclusion. Jurnal Ilmiah Akuntansi Dan Bisnis, 17(1). https://doi.org/10.24843/jiab.2022.v17.i01.p12
  27. Hong, C., Choi, H., Choi, E.-K., & Joung, H.-W. (2021). Factors affecting customer intention to use online food delivery services before and during the COVID-19 pandemic. Journal of Hospitality and Tourism Management, 48, 509–518. https://doi.org/10.1016/j.jhtm.2021.08.012
  28. Karim, M., Haque, A., Ulfy, M. A., et al. (2020). Factors influencing the use of e-wallet as a payment method among Malaysian young adults. International Journal of Business and Management, 3, 1-12. https://doi.org/10.37227/jibm-2020-2-21
  29. Kasilingam, D. L. (2020). Understanding the attitude and intention to use smartphone chatbots for shopping. Technology in Society, 62, 101280. https://doi.org/10.1016/j.techsoc.2020.101280
  30. Kemarauwana, M., & Darmawan, D. (2020). Perceived ease of use contribution to behavioral intention in digital payment. Journal of Science, Technology and Society (SICO), 1(1), 1-4.
  31. Kock, N., & Hadaya, P. (2016). Minimum sample size estimation in PLS‐SEM: The inverse square root and gamma‐exponential methods. Information Systems Journal, 28(1), 227–261. Portico. https://doi.org/10.1111/isj.12131
  32. Kumar, S., & Karlina, L. (2020). Intention to Use Credit Card among College Students in Greater Jakarta. Journal of Applied Accounting and Finance, 4(1), 49. https://doi.org/10.33021/jaaf.v4i1.1227
  33. Kumari, V., Bala, P. K., & Chakraborty, S. (2023). An Empirical Study of User Adoption of Cryptocurrency Using Blockchain Technology: Analysing Role of Success Factors like Technology Awareness and Financial Literacy. Journal of Theoretical and Applied Electronic Commerce Research, 18(3), 1580–1600. https://doi.org/10.3390/jtaer18030080
  34. Ma, C., Jin, Z., Mei, Z., et al. (2022). Internet of Things Background: An Empirical Study on the Payment Intention of Central Bank Digital Currency Design. Mobile Information Systems, 2022, 1–12. https://doi.org/10.1155/2022/4846372
  35. Mailizar, M., Almanthari, A., & Maulina, S. (2021). Examining Teachers’ Behavioral Intention to Use E-learning in Teaching of Mathematics: An Extended TAM Model. Contemporary Educational Technology, 13(2), ep298. https://doi.org/10.30935/cedtech/9709
  36. Maulana, A., Dasa Putri, A., & Yulia. (2019). Development of digital currency technology. Journal of Physics: Conference Series, 1175, 012205. https://doi.org/10.1088/1742-6596/1175/1/012205
  37. Mullan, P. C. (2014). The Digital Currency Challenge. Palgrave Macmillan US. https://doi.org/10.1057/9781137382559
  38. Musleh Al-Sartawi, A. M. A., Abd Wahab, M. H., Hussainey, K. (2024). Global Economic Revolutions: Big Data Governance and Business Analytics for Sustainability. In: Communications in Computer and Information Science. Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-50518-8
  39. Nguyen, H. Y. (2020). Fintech in Vietnam and Its Regulatory Approach. In: Fenwick, M., Van Uytsel, S., Ying, B. (editors). Regulating FinTech in Asia. Perspectives in Law, Business and Innovation. Springer. https://doi.org/10.1007/978-981-15-5819-1_7
  40. Nugroho, A., Najib, M., & Simanjuntak, M. (2018). Factors Affecting Consumer Interest In Electronic Money Usage With Theory Of Planned Behavior (TPB). Journal of Consumer Sciences, 3(1), 15. https://doi.org/10.29244/jcs.3.1.15-27
  41. Park, J., Amendah, E., Lee, Y., et al. (2018). M‐payment service: Interplay of perceived risk, benefit, and trust in service adoption. Human Factors and Ergonomics in Manufacturing & Service Industries, 29(1), 31–43. Portico. https://doi.org/10.1002/hfm.20750
  42. Prayidyaningrum, S., & Djamaludin, M. D. (2016). Theory of Planned Behavior to Analyze the Intention to Use the Electronic Money. Journal of Consumer Sciences, 1(2), 1. https://doi.org/10.29244/jcs.1.2.1-12
  43. Saif Almuraqab, N. A. (2020). Predicting determinants of the intention to use digital currency in the UAE: An empirical study. The electronic journal of information systems in developing countries, 86(3). Portico. https://doi.org/10.1002/isd2.12125
  44. Sarstedt, M., Ringle, C. M., Smith, D., et al. (2014). Partial least squares structural equation modeling (PLS-SEM): A useful tool for family business researchers. Journal of Family Business Strategy, 5(1), 105–115. https://doi.org/10.1016/j.jfbs.2014.01.002
  45. Sasongko, D. T., Handayani, P. W., & Satria, R. (2022). Analysis of factors affecting continuance use intention of the electronic money application in Indonesia. Procedia Computer Science, 197, 42–50. https://doi.org/10.1016/j.procs.2021.12.116
  46. Shahzad, F., Xiu, G., Wang, J., et al. (2018). An empirical investigation on the adoption of cryptocurrencies among the people of mainland China. Technology in Society, 55, 33–40. https://doi.org/10.1016/j.techsoc.2018.05.006
  47. Shanmugam, M., Sun, S., Amidi, A., et al. (2016). The applications of social commerce constructs. International Journal of Information Management, 36(3), 425–432. https://doi.org/10.1016/j.ijinfomgt.2016.01.007
  48. Shetu, S. N., Islam, Md. M., & Promi, S. I. (2022). An Empirical Investigation of the Continued Usage Intention of Digital Wallets: The Moderating Role of Perceived Technological Innovativeness. Future Business Journal, 8(1). https://doi.org/10.1186/s43093-022-00158-0
  49. Simarmata, M. T. A., & Hia, I. J. (2020). The role of personal innovativeness on behavioral intention of information technology. Journal of Economics and Business, 1(2), 18–29. https://doi.org/10.36655/jeb.v1i2.169
  50. Stolper, O. A., & Walter, A. (2017). Financial literacy, financial advice, and financial behavior. Journal of Business Economics, 87(5), 581–643. https://doi.org/10.1007/s11573-017-0853-9
  51. Tronnier, F., & Kakkar, S. (2021). Would You Pay with a Digital Euro? Investigating Usage Intention in Central Bank Digital Currency. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4194173
  52. Vietnam News. (2023). Banking sector invests big in digital transformation. Available online: https://vietnamnews.vn/economy/1537695/banking-sector-invests-big-in-digital-transformation.html (accessed on 11 January 2024).
  53. Viñuela, C., Sapena, J., & Wandosell, G. (2020). The Future of Money and the Central Bank Digital Currency Dilemma. Sustainability, 12(22), 9697. https://doi.org/10.3390/su12229697
  54. We Are Social. (2022). Digital 2022: Another year of bumper growth. Available online: https://wearesocial.com/uk/blog/2022/01/digital-2022-another-year-of-bumper-growth-2/ (accessed on 9 January 2024).
  55. Wong, K. K. (2013). Partial least square structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1-32.
  56. Wu, G., Yang, J., & Hu, Q. (2022). Research on factors affecting people’s intention to use digital currency: Empirical evidence from China. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2022.928735
  57. Yang, M., Mamun, A. A., Mohiuddin, M., et al. (2021). Cashless Transactions: A Study on Intention and Adoption of e-Wallets. Sustainability, 13(2), 831. https://doi.org/10.3390/su13020831
  58. Yizhen, W., Jamal, A. A. A. (2022). The adoption of digital currency electronic payment in China. Malaysian Journal of Business and Economics, 9(2). https://doi.org/10.51200/mjbe.v9i2.3929
  59. Yuen, K. F., Cai, L., Qi, G., et al. (2020). Factors influencing autonomous vehicle adoption: an application of the technology acceptance model and innovation diffusion theory. Technology Analysis & Strategic Management, 33(5), 505–519. https://doi.org/10.1080/09537325.2020.1826423


DOI: https://doi.org/10.24294/jipd.v8i7.5967

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Thi Thuy An Ngo, Thi Ngoc Thuy Tran, Thi Mai Xuan Bui, Nhat Quynh Le

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.