Statistical and fuzzy signature-based analysis of the aggressive attitudes of a forensic population
Vol 8, Issue 8, 2024
VIEWS - 854 (Abstract)
Abstract
Clustering technics, like k-means and its extended version, fuzzy c-means clustering (FCM) are useful tools for identifying typical behaviours based on various attitudes and responses to well-formulated questionnaires, such as among forensic populations. As more or less standard questionnaires for analyzing aggressive attitudes do exist in the literature, the application of these clustering methods seems to be rather straightforward. Especially, fuzzy clustering may lead to new recognitions, as human behaviour and communication are full of uncertainties, which often do not have a probabilistic nature. In this paper, the cluster analysis of a closed forensic (inmate) population will be presented. The goal of this study was by applying fuzzy c-means clustering to facilitate the wider possibilities of analysis of aggressive behaviour which is treated as a heterogeneous construct resulting in two main phenotypes, premeditated and impulsive aggression. Understanding motives of aggression helps reconstruct possible events, sequences of events and scenarios related to a certain crime, and ultimately, to prevent further crimes from happening.
Keywords
Full Text:
PDFReferences
Battaglia, A. M., Gicas, K. M., Rose, A. L., et al. (2020). Aggressive Personality and Aggressive Incidents: A Pilot Investigation of the Personality Assessment Inventory within Forensic Psychiatry. The Journal of Forensic Psychiatry & Psychology, 32(4), 520–534. https://doi.org/10.1080/14789949.2020.1867225
Berkowitz, L. (2012). A Different View of Anger: The Cognitive‐Neoassociation Conception of the Relation of Anger to Aggression. Aggressive Behavior, 38(4), 322–333. https://doi.org/10.1002/ab.21432
Bezdek J. C., Ehrlich R., & Full W. (1984). FCM: The fuzzy c-means clustering algorithm. Computers & geosciences, 10(2–3), 191–203. https://doi.org/10.1016/0098-3004(84)90020-7
Buss, A. H., & Perry, M. (1992). The Aggression Questionnaire. Journal of Personality and Social Psychology, 63(3), 452–459. https://doi.org/10.1037/0022-3514.63.3.452
Chen, T. C. T., & Honda, K. (2020). Fuzzy Collaborative Forecasting and Clustering. In: SpringerBriefs in Applied Sciences and Technology. Springer International Publishing. https://doi.org/10.1007/978-3-030-22574-2
Christopherson, K. M., Davis S. F., & Palladino J. J. (2013). Psychology. Pearson.
Clatworthy, J., Buick, D., Hankins, M., et al. (2005) The use and reporting of cluster analysis in health psychology: a review. British Journal of Health Psychology, 10(3), 329–358. https://doi.org/10.1348/135910705X25697
Coccaro, E. F., Berman, M. E., & Kavoussi, R. J. (1997). Assessment of life history of aggression: development and psychometric characteristics. Psychiatry research, 73(3), 147–157.
Eysenck, H. J., & Eysenck, S. B. (1976). Eysenck personality questionnaire. Educational and Industrial Testing Service.
Haden, S. C., Scarpa, A., & Stanford, M. S. (2008). Validation of the Impulsive/Premeditated Aggression Scale in College Students. Journal of Aggression, Maltreatment & Trauma, 17(3), 352–373. https://doi.org/10.1080/10926770802406783
Henslin, J. (1999). Sociology: A Down-to-Earth Approach, 4th ed. Needham Heights, MA: Allyn and Bacon.
Howell, L. (2014). Forensic Behavioural Analysis. Criminal Behaviour and the Justice System. Munich, GRIN Verlag.
Howells, K. (2011). Cognitive Behavioral Approaches to Formulating Aggression and Violence. Forensic Case Formulation, 107–127. https://doi.org/10.1002/9781119977018.ch5
Huitema, A., Verstegen, N., & de Vogel, V. (2018). A Study into the Severity of Forensic and Civil Inpatient Aggression. Journal of Interpersonal Violence, 36(11–12), NP6661–NP6679. https://doi.org/10.1177/0886260518817040
Klein Tuente, S., Bogaerts, S., & Veling, W. (2021). Mapping aggressive behavior of forensic psychiatric inpatients with self-report and structured staff-monitoring. Psychiatry Research, 301, 113983. https://doi.org/10.1016/j.psychres.2021.113983
Kockler, T. R., Stanford, M. S., Nelson, C. E., et al. (2006). Characterizing aggressive behavior in a forensic population. American Journal of Orthopsychiatry, 76(1), 80–85. https://doi.org/10.1037/0002-9432.76.1.80
Kóczy L.T. (1980). Vector Valued Fuzzy Sets. BUSEFAL (Bulletin for Studies and Exchanges on Fuzziness and Applications). Universite Paul Sabatier, Toulouse. pp. 41–57.
Kóczy, L. T., Cornejo, M. E., & Medina, J. (2021). Algebraic structure of fuzzy signatures. Fuzzy Sets and Systems, 418, 25–50. https://doi.org/10.1016/j.fss.2020.12.020
Kóczy, L. T., Susnienė, D., Purvinis, O., et al. (2020). Analyzing employee behavior related questionnaires by combined fuzzy signature model. Fuzzy Sets and Systems, 395, 254–272. https://doi.org/10.1016/j.fss.2020.04.018
Lavrakas, P. (2008). Encyclopedia of Survey Research Methods. Sage. https://doi.org/10.4135/9781412963947
Lindsay, J. J., & Anderson, C. A. (2000). From Antecedent Conditions to Violent Actions: A General Affective Aggression Model. Personality and Social Psychology Bulletin, 26(5), 533–547. https://doi.org/10.1177/0146167200267002
Loehlin, J. C., & Beaujean, A. A. (2017). Latent Variable Models. Routledge. https://doi.org/10.4324/9781315643199
Moscato, P. (1989). On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts: Towards Memetic Algorithms. California Institute of Technology, Pasadena.
Orange Documentation. (n.d.). K-Means. Available online: https://orangedatamining.com/widget-catalog/unsupervised/kmeans/ (accessed on 1 April 2024).
Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of clinical psychology, 51(6), 768–774.
Pétrowski, A., & Ben‐Hamida, S. (2017). Evolutionary Algorithms. Wiley. https://doi.org/10.1002/9781119136378
Raine, A., Meloy J. R., Bihrle S., et al. (1998). Reduced prefrontal and increased subcortical brain functioning assessed using positron emission tomography in predatory and affective murderers. Behavioural Sciences and the Law, 16: 319–332. https://doi.org/10.1002/(SICI)1099-0798(199822)16:3<319::AID-BSL311>3.0.CO;2-G
Ramirez, J. M. (2009). Some dychotomous classifications of aggression according to its function. Journal of Organisational Transformation and Social Change, 6 (2): 85–101. https://doi.org/10.1386/jots.6.2.85_1
Silver, J. M., & Yudofsky, S. C. (1991). The Overt Aggression Scale: overview and guiding principles. The Journal of Neuropsychiatry and Clinical Neurosciences, 3 (2): 22–29.
Spaans, M., Molendijk, M. L., de Beurs, E., et al. (2016). Self-reported personality traits in forensic populations: a meta-analysis. Psychology, Crime & Law, 23(1), 56–78. https://doi.org/10.1080/1068316x.2016.1220555
Stanford, M. S., Houston, R. J., Mathias, C. W., et al. (2003a). Characterizing Aggressive Behavior. Assessment, 10(2), 183–190. https://doi.org/10.1177/1073191103010002009
Stanford, M. S., Houston, R. J., Villemarette-Pittman, N. R., & Greve, K. W. (2003b). Premeditated aggression: Clinical assessment and cognitive psychophysiology. Personality and individual differences, 34(5), 773–781. https://doi.org/10.1016/S0191-8869(02)00070-3
Teten Tharp, A. L., Sharp, C., Stanford, M. S., et al. (2011). Correspondence of aggressive behavior classifications among young adults using the Impulsive Premeditated Aggression Scale and the Reactive Proactive Questionnaire. Personality and Individual Differences, 50(2), 279–285. https://doi.org/10.1016/j.paid.2010.10.003
Vamos, T., Biro, G., & Koczy, L. T. (1999). Fuzzy signatures. In: Proceedings of the EUROFUSE-SIC 99—4th Meeting of the EURO Working Group on Fuzzy Sets and the 2nd International Conference on Soft and Intelligent Computing; Budapest, Hungary, University of Veterinary Science and Technical University of Budapest, Budapest University of Technology. pp. 210–217.
Vitiello, B., Behar, D., Hunt, J., Stoff, D., & Ricciuti, A. (1990). Subtyping aggression in children and adolescents. The Journal of neuropsychiatry and clinical neurosciences, 2(2), 189–192.
Wall Myers, T. D., Salcedo, A., Frick, P. J., et al. (2018). Understanding the link between exposure to violence and aggression in justice-involved adolescents. Development and Psychopathology, 30(2), 593–603. https://doi.org/10.1017/s0954579417001134
Weinshenker, N. J., & Siegel, A. (2002). Bimodal classification of aggression: affective defense and predatory attack. Aggression and Violent Behaviour, 7(3), 237–250. https://doi.org/10.1016/S1359-1789(01)00042-8
Witten, I. H., & Eibe, F. (2011). Data Mining. Practical Machine Learning Tools and Techniques. Elsevier.
Wong, K. W., Chong, A., Gedeon, T. D. (2003). Hierarchical Fuzzy Signature Structure for Complex Structured Data, International Symposium on Computational Intelligence and Intelligent Informatics. In: Proceedings of the international conference in Nabeul; Tunisia. pp. 105–109.
Woodworth, M., & Porter, S. (2002). In cold blood: Characteristics of criminal homicides as a function of psychopathy. Journal of Abnormal Psychology, 111(3), 436–445. https://doi.org/10.1037/0021-843x.111.3.436
Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3): 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X
Zanaty, E. A. (2012). Determining the number of clusters for kernelized fuzzy C-means algorithms for automatic medical image segmentation. Egyptian Informatics Journal, 13(1), 39–58. https://doi.org/10.1016/j.eij.2012.01.004
Zwets, A. J., Hornsveld, R. H. J., Muris, P., et al. (2015). Implicit attitudes toward violence and their relation to psychopathy, aggression, and socially adaptive behaviors in forensic psychiatric inpatients. The Journal of Forensic Psychiatry & Psychology, 26(5), 632–651. https://doi.org/10.1080/14789949.2015.1037331
DOI: https://doi.org/10.24294/jipd.v8i8.5727
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 László T. Kóczy, Dalia Susniene, Ojaras Purvinis, Daiva Zostautiene
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.