References
Adams, S. O., Awujola, A., Alumgudu, A. I. (2014). Modeling Nigeria’s Consumer Price Index Using ARIMA Model. International Journal of Development and Economic Sustainability, 2(2): 37-47.
Ahmar, A. S., GS, A. D., Listyorini, T., et al. (2018). Implementation of the ARIMA(p,d,q) method to forecasting CPI Data usingforecast packagein R Software. Journal of Physics: Conference Series, 1028, 012189. https://doi.org/10.1088/1742-6596/1028/1/012189
Ahmar, A. S., Rahman, A., Mulbar, U. (2018). α-Sutte Indicator: a new method for time series forecasting. Journal of Physics: Conference Series, 1040, 012018. https://doi.org/10.1088/1742-6596/1040/1/012018
Akhter, T., (2013). Short-term forecasting of inflation in Bangladesh with seasonal ARIMA processes. MPRA Paper, Munich University Library.
Alam, T. (2019). Forecasting exports and imports through artificial neural network and autoregressive integrated moving average. Decision Science Letters, 249–260. https://doi.org/10.5267/j.dsl.2019.2.001
Alam, T., AlArjani, A. (2021). A Comparative Study of CO2 Emission Forecasting in the Gulf Countries Using Autoregressive Integrated Moving Average, Artificial Neural Network, and Holt-Winters Exponential Smoothing Models. Advances in Meteorology, 2021, 1–9. https://doi.org/10.1155/2021/8322590
Almanjahie, I. M., Chikr-Elmezouar, Z., &Bachir, A. (2019). Modelling and forecasting the household water consumption in Saudi Arabia. Applied ecology and environmental research, 17(1), 1299-1309. http://dx.doi.org/10.15666/aeer/1701_12991309
Ashuri, B., Lu, J. (2010). Time series analysis of ENR construction cost index. Journal of Construction Engineering and Management, 136(11), 1227-1237. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000231
Beran, J. (2017). Mathematical Foundations of Time Series Analysis. Springer International Publishing. https://doi.org/10.1007/978-3-319-74380-6
Boniface, A., Martin, A. (2019). Time Series Modeling and Forecasting of Consumer Price Index in Ghana. Journal of Advances in Mathematics and Computer Science, 1–11. https://doi.org/10.9734/jamcs/2019/v32i130134
Box, G. E., Jenkins, G. M., Reinsel, G. C. (2011). Time series analysis: forecasting and control. John Wiley & Sons.
Box, G. E., Jenkins, G. M., Reinsel, G. C., Ljung, G. M. (2015). Time series analysis: forecasting and control. John Wiley & Sons.
Chatfield, C., Xing, H. (2019). The Analysis of Time Series. Chapman and Hall/CRC. https://doi.org/10.1201/9781351259446
Du, Y., Cai, Y., Chen, M., et al. (2014). A Novel Divide-and-Conquer Model for CPI Prediction Using ARIMA, Gray Model and BPNN. Procedia Computer Science, 31, 842–851. https://doi.org/10.1016/j.procs.2014.05.335
Eissa, N. (2020). Forecasting the GDP per Capita for Egypt and Saudi Arabia Using ARIMA Models. Research in World Economy, 11(1), 247. https://doi.org/10.5430/rwe.v11n1p247
General Authority for Statistics. (2024). Construction and Building survey. Available online: https://www.stats.gov.sa/en/awareness-surveys/cb (accessed on 2 June 2023).
Gjika Dhamo, E., Puka, L., Zaçaj, O. (2018). Forecasting consumer price index (cpi) using time series models and multi regression models (albania case study). In: Proceedings of the 10th International Scientific Conference “Business and Management 2018.” https://doi.org/10.3846/bm.2018.51
Harris, R. I. (1992). Testing for unit roots using the augmented Dickey-Fuller test: Some issues relating to the size, power and the lag structure of the test. Economics letters, 38(4), 381-386. https://doi.org/10.1016/0165-1765(92)90022-Q
Hyndman, R. J., Athanasopoulos, G. (2018). Forecasting: principles and practice. OTexts.
Jere, S., Banda, A., Chilyabanyama, R., et al. (2019). Modeling Consumer Price Index in Zambia: A Comparative Study between Multicointegration and Arima Approach. Open Journal of Statistics, 09(02), 245–257. https://doi.org/10.4236/ojs.2019.92018
Ji, S., Dong, J., Wang, Y., et al. (2020). Research on CPI Prediction Based on Space-Time Model. In: Proceedings of the 2019 6th International Conference on Dependable Systems and Their Applications (DSA). https://doi.org/10.1109/dsa.2019.00058
Kharimah, F., Usman, M., Widiarti, W., Elfaki, F. A. M. (2015). Time series modeling and forecasting of the consumer price index Bandar Lampung. Science International Lahore, 27(5), 4619-4624.
Kuhe, D. A., Egemba, R. C. (2016). Modelling and Forecasting CPI Inflation in Nigeria: Application of Autoregressive Integrated Moving average Homoskedastic Model. Journal of Scientific and engineering Research, 3(2), 57-66.
Liu, T., Liu, S., Shi, L. (2020). Time Series Analysis Using SAS Enterprise Guide. Springer Singapore. https://doi.org/10.1007/978-981-15-0321-4
Masood, A., Bahrawi, J., Elfeki, A. (2019). Modeling annual rainfall time series in Saudi Arabia using first-order autoregressive AR (1) model. Arabian Journal of Geosciences, 12(6). https://doi.org/10.1007/s12517-019-4330-3
Montgomery, D. C., Jennings, C. L., Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons.
Mordi, C. N. O, Adeby, M. A, Adamgbe, E. T (2012). Short-term inflation forecasting for monetary policy in Nigeria. Central Bank of Nigeria Occasion Paper No. 42
Mustapa, F. H., Ismail, M. T. (2019). Modelling and forecasting S&P 500 stock prices using hybrid Arima-Garch Model. Journal of Physics: Conference Series, 1366(1), 012130. https://doi.org/10.1088/1742-6596/1366/1/012130
Norbert, H. (2016). Modeling and Forecasting Consumer Price Index (Case of Rwanda). American Journal of Theoretical and Applied Statistics, 5(3), 101. https://doi.org/10.11648/j.ajtas.20160503.14
Nyoni, T. (2019). Predicting consumer price index in Saudi Arabia. available online: https://www.researchgate.net/publication/331546302_Predicting_Consumer_Price_Index_In_Saudi_Arabia (accessed on 2 February 2024).
Pandey, K., Basu, B. (2020). Mathematical modeling for short term indoor room temperature forecasting using Box-Jenkins models. Journal of Modelling in Management, 15(3), 1105–1136. https://doi.org/10.1108/jm2-08-2019-0182
Riofrío, J., Chang, O., Revelo-Fuelagán, E. J., et al. (2020). Forecasting the Consumer Price Index (CPI) of Ecuador: A Comparative Study of Predictive Models. International Journal on Advanced Science, Engineering and Information Technology, 10(3), 1078–1084. https://doi.org/10.18517/ijaseit.10.3.10813
Shmueli, G., Lichtendahl Jr, K. C. (2016). Practical time series forecasting with r: A hands-on guide. Axelrod Schnall Publishers.
Ülke, V., Sahin, A., Subasi, A. (2016). A comparison of time series and machine learning models for inflation forecasting: empirical evidence from the USA. Neural Computing and Applications, 30(5), 1519–1527. https://doi.org/10.1007/s00521-016-2766-x
Xu, X., Zhang, Y. (2022). Contemporaneous causality among one hundred Chinese cities. Empirical Economics, 63(4), 2315–2329. https://doi.org/10.1007/s00181-021-02190-5
Zhang, F., Che, W., Xu, B., et al. (2013). The Research of ARMA Model in CPI Time Series. In: Proceedings of the 2nd International Symposium on Computer, Communication, Control and Automation. https://doi.org/10.2991/isccca.2013.8
Zhang, X., Yang, E. (2023). Have housing value indicators changed during COVID? Housing value prediction based on unemployment, construction spending, and housing consumer price index. International Journal of Housing Markets and Analysis, 17(1), 242–260. https://doi.org/10.1108/ijhma-01-2023-0015