References
Andika, O. (2023). Evaluasi Flow Proses Produksi dengan Metode Line Balancing untuk Meningkatkan Kapasitas Produksi Tiang Pancang Bulat Pada PT. Adhi Persada Beton Plant Mojokerto-Jawa Timur. Jurnal Teknik Industri, 13(1), 90–97. https://doi.org/10.25105/jti.v13i1.17520
Bayoumi, A. M. E. (2000). Design For Manufacture And Assembly (Dfma): Concepts, Benefits And Applications. Current Advances in Mechanical Design and Production, VII, 501–509. https://doi.org/10.1016/b978-008043711-8/50051-9
Brunesi, E., Nascimbene, R., & Peloso, S. (2018). Evaluation of the Seismic Response of Precast Wall Connections: Experimental Observations and Numerical Modeling. Journal of Earthquake Engineering, 24(7), 1057–1082. https://doi.org/10.1080/13632469.2018.1469440
Brunesi, E., Peloso, S., Pinho, R., et al. (2018). Cyclic testing and analysis of a full-scale cast-in-place reinforced concrete wall-slab-wall structure. Bulletin of Earthquake Engineering, 16(10), 4761–4796. https://doi.org/10.1007/s10518-018-0374-0
Brunesi, E., Peloso, S., Pinho, R., et al. (2019). Cyclic tensile testing of a three‐way panel connection for precast wall‐slab‐wall structures. Structural Concrete, 20(4), 1307–1315. https://doi.org/10.1002/suco.201800280
Cornelius, R. (2018). Traceability: The Respect-Code Solution. In: Management for Professionals. https://doi.org/10.1007/978-3-319-74367-7_12
Dai, P., Yang, L., Wang, Y., et al. (2023). Constructing Traceability Links between Software Requirements and Source Code Based on Neural Networks. Mathematics, 11(2), 315. https://doi.org/10.3390/math11020315
De Nadai Fernandes, E. A., Sarriés, G. A., Mazola, Y. T., et al. (2022). Machine Learning to Support Geographical Origin Traceability of Coffea Arabica. Advances in Artificial Intelligence and Machine Learning, 2(1). https://doi.org/10.54364/AAIML.2021.1118
Fernandes, E. A. D. N., Sarriés, G. A., Mazola, Y. T., et al. (2022). Machine learning to support geographical origin traceability of Coffea Arabica. Advances in Artificial Intelligence and Machine Learning, 2(1), 273–287. https://doi.org/10.54364/aaiml.2022.1118
Handayani, A. (2020). Siklus Produksi (Cycle Time) Beton Pracetak dengan Metode Beton Self Compacting Concrete (SCC). Rekayasa Sipil, 9(1), 18. https://doi.org/10.22441/jrs.2020.v09.i1.04
León-Duarte, J. A., Re-Iñiguez, B. M. D. L., & Romero-Dessens, L. F. (2020). Advantages of the Use of Electronic Traceability Systems in Manufacturing Processes. Información Tecnológica, 31(1), 237–244. https://doi.org/10.4067/s0718-07642020000100237
Lopez-Bernal, D., Balderas, D., Ponce, P., et al. (2021). Education 4.0: Teaching the Basics of KNN, LDA and Simple Perceptron Algorithms for Binary Classification Problems. Future Internet, 13(8), 193. https://doi.org/10.3390/fi13080193
Punyamurthula, S., & Badurdeen, F. (2018). Assessing Production Line Risk using Bayesian Belief Networks and System Dynamics. Procedia Manufacturing, 26, 76–86. https://doi.org/10.1016/j.promfg.2018.07.010
Purnomo, N. F. (2018). Analisis Efektivitas Lini Produksi Beton Spunpile dengan Pendekatan Total Productive Maintenance (TPM). Teknik Industri.
Realyvásquez-Vargas, A., Arredondo-Soto, K. C., Blanco-Fernandez, J., et al. (2020). Work Standardization and Anthropometric Workstation Design as an Integrated Approach to Sustainable Workplaces in the Manufacturing Industry. Sustainability, 12(9), 3728. https://doi.org/10.3390/su12093728
Rostami, A. (2016). Tools and Techniques in Risk Identification: A Research within SMEs in the UK Construction Industry. Universal Journal of Management, 4(4), 203–210. https://doi.org/10.13189/ujm.2016.040406
Saputra, A., Yusup, M. I., & Abadi, M. K. (2022). Analisis Pengendalian Mutu Beton Spun Pile Diameter 300 mm Produksi Pt. Waskita Beton Precast - Plant Bojonegara. Journal of Sustainable Civil Engineering (JOSCE), 4(1). https://doi.org/10.47080/josce.v4i01.1683
Satyadharma, W. R. (2022). Optimalisasi proses produksi tiang pancang (spun pile) menggunakan connector ring pada cetakan. Seminar Nasional Insinyur Profesional (SNIP), 2(1). https://doi.org/10.23960/snip.v2i1.39
Schuitemaker, R., & Xu, X. (2020). Product traceability in manufacturing: A technical review. Procedia CIRP, 93, 700–705. https://doi.org/10.1016/j.procir.2020.04.078
Shanta, M. V., & Semenova, E. G. (2019). Methodic for analyses and ranking of quality risks at production assembly line. Issues of Radio Electronics, 1(7), 60–71. https://doi.org/10.21778/2218-5453-2019-7-60-71
Shirazi, F. (2021). Managing portfolio’s risk for improving quality in a project oriented manufacture. International Journal of Innovation in Engineering, 1(1), 48–57. https://doi.org/10.52547/ijie.1.1.48
Soltanali, H., Rohani, A., Abbaspour-Fard, M. H., et al. (2019). Development of a risk-based maintenance decision making approach for automotive production line. International Journal of System Assurance Engineering and Management, 11(1), 236–251. https://doi.org/10.1007/s13198-019-00927-1
Tacchino, F., Macchiavello, C., Gerace, D., et al. (2019). An artificial neuron implemented on an actual quantum processor. Npj Quantum Information, 5(1). https://doi.org/10.1038/s41534-019-0140-4
Tarakçi, E., Can, E., Sakalli, A. E., et al. (2020). The ergonomic risk analysis with reba method in production line. Ergonomi, 3(2), 96–107. https://doi.org/10.33439/ergonomi.743276
Wang, J., Yue, H., & Zhou, Z. (2017). An improved traceability system for food quality assurance and evaluation based on fuzzy classification and neural network. Food Control, 79, 363–370. https://doi.org/10.1016/j.foodcont.2017.04.013
Wang, K., Kumar, V., Zeng, X., et al. (2019). Development of a Textile Coding Tag for the Traceability in Textile Supply Chain by Using Pattern Recognition and Robust Deep Learning. International Journal of Computational Intelligence Systems, 12(2), 713. https://doi.org/10.2991/ijcis.d.190704.002
Zhu, Z., Yong, Y. P., Lee, S., et al. (2021). Vision-based Precast Concrete Management Plan in Off-Site Construction Site : Using PC Member Quality Grades. Proceedings of the International Symposium on Automation and Robotics in Construction (IAARC). https://doi.org/10.22260/isarc2021/0029