Policy for handling air pollution in Jakarta: Study using System Dynamics Simulation Models

Azhari Aziz Samudra, Bram Hertasning, Ladoni Amiro

Article ID: 2969
Vol 8, Issue 2, 2024

VIEWS - 790 (Abstract) 361 (PDF)

Abstract


Air pollution in Jakarta has become a severe concern in the last four months. IQAir, in August 2023, revealed that the level of air pollution had reached 161 points on the Air Pollution Standard Index (APSI). The negative impact on society has placed air pollution as a concern for environmental safety and survival in danger. This condition will encourage the development of a national policy agenda to integrate environmental welfare through various energy efficiency channels. This research analyzes the relationship between air pollutant elements that can reduce air quality. The analysis includes pollutant intensity measured by APSI per unit of pollutant as a measure of efficiency. The aim is to observe energy use, which causes an increase in pollutant levels. This research utilizes dynamic system modeling to produce relationships between parameters to produce factors that cause pollution. The parameters used are motorized vehicles, waste burning in landfills, industry, and power plants. The results of historical behavioral tests and statistical suitability tests show that the behavior is suitable for the short and long term. The simulation results show that the pollution level will worsen by the end of 2027, a hazardous condition for society. The optimistic scenario simulation model proposes immediate counter-measures to reduce pollution to 45.01, the ideal condition. To accelerate improvements in air quality, the Government can plan policies to reduce the use of coal by power plants and industry, as well as the use of electric motorized vehicles, resulting in an ideal reduction in pollution by 2024. In conclusion, pollution can be reduced effectively if the Government firmly implements policies to maintain that air quality remains stable below 50 points.


Keywords


public policy; air pollution; motor vehicle; power plan; waste burn; industrial pollution; dynamic system simulation

Full Text:

PDF


References


Adam S (2019). Pantas Sering Macet, Panjang Jalan di Jakarta Cuma Segini, Ternyata Ini Idealnya. GridOto.Com.

Ahdiat A (2023). 5 Jenis Polutan Utama yang Mencemari Udara Jakarta. Katadata.Co.Id.

Annur CM (2023). Kualitas Udara Jakarta Lebih Buruk dari Ibu Kota ASEAN Lainnya. Katadata.Co.Id.

Bekun FV (2022). Mitigating Emissions in India: Accounting for the Role of Real Income, Renewable Energy Consumption and Investment in Energy. IJEEP 12(1): 188-192. doi: 10.32479/ijeep.12652

BPS (2022a). Jumlah Kendaraan Bermotor Menurut Jenis Kendaraan (unit) di Provinsi DKI Jakarta 2020–2022.

BPS (2022b). Realisasi Pendapatan Pemerintah Provinsi DKI Jakarta Menurut Jenis Pendapatan (ribu rupiah) 2018–2022.

Brennan C, Molloy O (2020). A system dynamics approach to sustainability education. Syst Res Behav Sci 37(6): 875-879. doi: 10.1002/sres.2755

Chai T, Draxler RR (2014). Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci Model Dev 7(3): 1247-1250. doi: 10.5194/gmd-7-1247-2014

Choi E, Shrestha N, Bhandari TR (2021). Open waste burning contrary to other air pollution-related perceptions and practices in Pokhara, Nepal. Archives of Environmental & Occupational Health 77(9): 721-733. doi: 10.1080/19338244.2021.2004985

Clinten B (2023). Riset TomTom: Jakarta Kota Termacet Nomor 29 di Dunia. Kompas.Com.

CNN (2023). Bukan Kendaraan, Studi Ungkap Sumber Polusi Udara Sesungguhnya. CNN Indonesia.

Coyle G (2000). Qualitative and Quantitative Modelling in System Dynamics: Some Research Questions. System Dynamics Review 16: 225-244. doi: 10.1002/1099-1727(200023)16:3<225::AID-SDR195>3.0.CO;2-D

Duggan J (2016a). An Introduction to System Dynamics. In: System Dynamics Modeling with R. Springer International Publishing.

Duggan J (2016b). System Dynamics Modeling with R. Springer International Publishing. doi:10.1007/978-3-319-34043-2

East J, Montealegre JS, Pachon JE, Garcia-Menendez F (2021). Air quality modeling to inform pollution mitigation strategies in a Latin American megacity. Science of The Total Environment 776: 145894. doi: 10.1016/j.scitotenv.2021.145894

EREN ŞENARAS A (2017). Structure and Behavior in System Dynamics: A Case Study in Logistic. Isarder 9(4): 321-340. doi: 10.20491/isarder.2017.334

Esteso A, Alemany MME, Ottati F, Ortiz Á (2023). System dynamics model for improving the robustness of a fresh agri-food supply chain to disruptions. Oper Res Int J 23(2). doi: 10.1007/s12351-023-00769-7

Farooq U, Subhani BH, Shafiq MN, Gillani S (2023). Assessing the environmental impacts of environmental tax rate and corporate statutory tax rate: Empirical evidence from industry-intensive economies. Energy Reports 9: 6241-6250. doi: 10.1016/j.egyr.2023.05.254

Favereau M, Robledo LF, Bull MT (2020). Homeostatic representation for risk decision making: A novel multi-method simulation approach for evacuation under volcanic eruption. Nat Hazards 103(1): 29-56. doi: 10.1007/s11069-020-03957-2

Fisher D (2018). Reflections on Teaching System Dynamics Modeling to Secondary School Students for over 20 Years. Systems 6(2): 12. doi: 10.3390/systems6020012

Hanna R, Kreindler G, Olken BA (2017). Citywide effects of high-occupancy vehicle restrictions: Evidence from “three-in-one” in Jakarta. Science 357(6346): 89-93. doi: 10.1126/science.aan2747

Hao Y, Niu X, Wang J (2021). Impacts of haze pollution on China’s tourism industry: A system of economic loss analysis. Journal of Environmental Management 295: 113051. doi: 10.1016/j.jenvman.2021.113051

Hekimoğlu M, Barlas Y (2016). Sensitivity analysis for models with multiple behavior modes: a method based on behavior pattern measures. System Dynamics Review 32(3-4): 332-362. doi: 10.1002/sdr.1568

Hertasning B, Samudra AA, Satispi E, et al. (2022). Strategi Zonasi Penggunaan Kendaraan Bermotor dengan Pendekatan Zona Parkir Progresif dan Zona Rendah Emisi dalam Mewujudkan Kota Ramah Lingkungan. JPTD 24(2): 119-126. doi: 10.25104/jptd.v24i2.2175

Hu S, Ren F, Jia J, et al. (2022). Exploring the environmental properties and resource utilization of construction waste in Beijing-Tianjin-Hebei region. Environ Sci Pollut Res. doi: 10.1007/s11356-022-23327-8

Huang Y, Lei C, Liu CH, et al. (2021). A review of strategies for mitigating roadside air pollution in urban street canyons. Environmental Pollution 280: 116971. doi: 10.1016/j.envpol.2021.116971

IQAir (2023). Air quality in Jakarta: Unhealthy for Sensitive Groups. IQAir.

Islam MdR, Jayarathne T, Simpson IJ, et al. (2020). Ambient air quality in the Kathmandu Valley, Nepal, during the pre-monsoon: concentrations and sources of particulate matter and trace gases. Atmos Chem Phys 20(5): 2927-2951. doi: 10.5194/acp-20-2927-2020

Keshavarzzadeh M, Zahedi R, Eskandarpanah R, et al. (2023). Estimation of NOx pollutants in a spark engine fueled by mixed methane and hydrogen using neural networks and genetic algorithm. Heliyon 9(4): e15304. doi: 10.1016/j.heliyon.2023.e15304

Li C, Xia W, Wang L (2021). The transfer mechanism of pollution industry in China under multi-factor combination model—Based on the perspective of industry, location, and environment. Environ Sci Pollut Res 28(42): 60167-60181. doi: 10.1007/s11356-021-14643-6

Li P, Lin Z, Du H, et al. (2021). Do environmental taxes reduce air pollution? Evidence from fossil-fuel power plants in China. Journal of Environmental Management 295: 113112. doi: 10.1016/j.jenvman.2021.113112

Millsap AA, Hobbs BK, Stansel D (2019). Local Governments and Economic Freedom: A Test of the Leviathan Hypothesis. Public Finance Review 47(3): 493-529. doi: 10.1177/1091142118817909

Narwane VS, Raut RD, Yadav VS, et al. (2021). The role of big data for Supply Chain 4.0 in manufacturing organisations of developing countries. JEIM 34(5): 1452-1480. doi: 10.1108/jeim-11-2020-0463

Noël C, Van Landschoot L, Vanroelen C, Gadeyne S (2022). The Public’s Perceptions of Air Pollution. What’s in a Name? Environmental Health Insights 16: 117863022211235. doi: 10.1177/11786302221123563

Oderinwale T, van der Weijde AH (2016). Carbon taxation and feed-in tariffs: Evaluating the effect of network and market properties on policy effectiveness. Energy Syst 8(3): 623-642. doi: 10.1007/s12667-016-0219-3

Paine J (2022). Dynamic supply chains with endogenous dispositions. System Dynamics Review 39(1): 32-63. doi: 10.1002/sdr.1725

Puspaningtyas L (2023). YLKI: Indonesia Surplus Listrik. Repbulika.

Qudrat-Ullah H, Seong BS (2010). How to do structural validity of a system dynamics type simulation model: The case of an energy policy model. Energy Policy 38(5): 2216-2224. doi: 10.1016/j.enpol.2009.12.009

Rahadianto NA, Maarif S, Yuliati LN (2019). Analysis of intention to use transjakarta bus. Ind Jour Manag & Prod 10(1): 301. doi: 10.14807/ijmp.v10i1.748

Ramli RR (2023). Emisi Karbon Pembakaran Sampah di Jabodetabek Setara Kebakaran 108.000 Hektar Hutan. Kompas.Com.

Saikawa E, Wu Q, Zhong M, et al. (2020). Garbage Burning in South Asia: How Important Is It to Regional Air Quality? Environ Sci Technol 54(16): 9928-9938. doi: 10.1021/acs.est.0c02830

Sandi MR (2022). Jakarta Provincial Government Proposes Draft Regulation on Restricting Private Vehicles. Sindonews.

Satispi E, Aziz Samudra A (2022). Study of Policy Implementation: Strategy of COVID-19 Plastic Waste Management in Indonesia. JPPA 6(4): 155. doi: 10.11648/j.jppa.20220604.11

Schoenberg W, Hayward J, Eberlein R (2023). Improving Loops that Matter. System Dynamics Review 39(2): 140-151. doi: 10.1002/sdr.1728

Schoenenberger L, Schmid A, Tanase R, et al. (2021). Structural Analysis of System Dynamics Models. Simulation Modelling Practice and Theory 110: 102333. doi: 10.1016/j.simpat.2021.102333

Siddiqua A, Hahladakis JN, Al-Attiya WAKA (2022). An overview of the environmental pollution and health effects associated with waste landfilling and open dumping. Environ Sci Pollut Res 29(39): 58514-58536. doi: 10.1007/s11356-022-21578-z

Staadt J (2015). The Cultural Analysis of Soft Systems Methodology and the Configuration Model of Organizational Culture. SAGE Open 5(2): 215824401558978. doi: 10.1177/2158244015589787

Supriana FJR, Siregar ML, Tangkudung ESW, Kusuma A (2020). Evaluation of Odd-Even Vehicle Registration Number Regulation Before and After Expansion of the Rule in Jakarta. In: Proceedings of the 2nd International Symposium on Transportation Studies in Developing Countries (ISTSDC 2019). doi:10.2991/aer.k.200220.032

TEZEL Ö, TİRYAKİ BK, ÖZKUL E, KESEMEN O (2021). A New Goodness-of-Fit Test: Free Chi-Square (FCS). Gazi University Journal of Science 34(3): 879-897. doi: 10.35378/gujs.743444

Umasugi RA (2019). Pemprov DKI: 114 Pabrik di Jakarta Cemari Lingkungan Lewat Cerobong Buangan Gas Sisa. Kompas.Com.

Wang S, Zhou H (2021). High Energy-Consuming Industrial Transfers and Environmental Pollution in China: A Perspective Based on Environmental Regulation. IJERPH 18(22): 11866. doi: 10.3390/ijerph182211866

Warren K (2005). Improving strategic management with the fundamental principles of system dynamics. System Dynamics Review 21(4): 329-350. doi: 10.1002/sdr.325

Wei H, Yao H (2022). Environmental Regulation, Roundabout Production, and Industrial Structure Transformation and Upgrading: Evidence from China. Sustainability 14(7): 3810. doi: 10.3390/su14073810

Williams R, Pettinen R, Ziman P, et al. (2021). Fuel Effects on Regulated and Unregulated Emissions from Two Commercial Euro V and Euro VI Road Transport Vehicles. Sustainability 13(14): 7985. doi: 10.3390/su13147985

Xu J, Jiang Y, Guo X, Jiang L (2021). Environmental Efficiency Assessment of Heavy Pollution Industry by Data Envelopment Analysis and Malmquist Index Analysis: Empirical Evidence from China. IJERPH 18(11): 5761. doi: 10.3390/ijerph18115761

Zhao M, Sun T (2022). Dynamic spatial spillover effect of new energy vehicle industry policies on carbon emission of transportation sector in China. Energy Policy 165: 112991. doi: 10.1016/j.enpol.2022.112991

Zhong M, Saikawa E, Avramov A, et al. (2019). Nepal Ambient Monitoring and Source Testing Experiment (NAMaSTE): Emissions of particulate matter and sulfur dioxide from vehicles and brick kilns and their impacts on air quality in the Kathmandu Valley, Nepal. Atmos Chem Phys 19(12): 8209-8228. doi: 10.5194/acp-19-8209-2019




DOI: https://doi.org/10.24294/jipd.v8i2.2969

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Azhari Aziz Samudra, Bram Hertasning, Ladoni Amiro

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.