Exploring consumer motivations and barriers in solar energy investments in North Transdanubia

Szilvia Módosné Szalai, Szonja Jenei, Elena Moreno-García, Vasantha Patibandla Lakshmi, Erika Tóthné Juhász, Csaba Bálint Illés

Article ID: 10227
Vol 8, Issue 16, 2024

VIEWS - 774 (Abstract)

Abstract


The global significance of the energy crisis and the need for a sustainable European electricity system have intensified interest in renewable energy sources. This study aims to explore the attitudes toward solar energy systems among the population of the North Transdanubian region, which is crucial for companies in the region specializing in solar system installation. The research sheds light on trends in energy prices, potential strategies for addressing the energy crisis, and the regulatory environment for solar systems in Hungary and Austria, focusing on the Burgenland region. The study is divided into two main sections: secondary and primary research. The secondary research presents various applications of renewable energy sources, especially solar energy, and examines energy pricing trends in the two countries, with particular emphasis on the payback period and the impact of changes in energy prices. The primary research is also divided into two parts: the first examines the satisfaction of customers who already use solar systems, and the second focuses on the attitudes of potential customers toward solar investments. The findings provide a comprehensive view of both current users’ and prospective investors’ perspectives on solar energy systems. The practical significance of this research lies in identifying development opportunities for companies, advancing energy efficiency goals, and supporting sustainability efforts.


Keywords


sustainability; solar energy; payback; customer satisfaction; potential buyers

Full Text:

PDF


References

  1. Al-Karim, G. (2023). Guest Editorial: Europe and North America’s Widening Transition Trajectory. Journal of Petroleum Technology, 75(5), 10–11. https://doi.org/10.2118/0523-0010-jpt
  2. Bereznay, I. (2023, September 14). Regulation changes for solar installations. Index. Retrieved October 7, 2023, from https://index.hu/gazdasag/2023/09/14/napelem-telepites-szabalyozas-valtozas-rendelet-kormany/
  3. Bokor, A. (1999). New trends in organizational behavior theory and practice (in Hungarian). In G. Bakacsi, Organizational behavior and leadership (pp. 309-325). KJK.
  4. Brückner, G. (2022, July 13). The energy crisis is so severe that the government has also touched the untouchable utility cost reduction (in Hungarian). Telex. Retrieved April 30, 2023, from https://telex.hu/gazdasag/2022/07/13/energiavalsag-energia-veszelyhelyzet-rezsicsokkentes-szigoritas-intezkedesek-gaz-gazellatas-elemzes
  5. Burgerland Energie. (n.d.). Energy cost flat rate for companies. Retrieved April 28, 2023, from https://www.burgenlandenergie.at/de/business/
  6. Chalvatzis, K., & Stephanides, P. (2018). Innovative energy islands: life-cycle cost-benefit analysis for battery energy storage. Sustainability, 10(10), 3371.
  7. Chatzipanagi, A., & Jäger-Waldau, A. (2023). The European Solar Communication—Will It Pave the Road to Achieve 1 TW of Photovoltaic System Capacity in the European Union by 2030? Sustainability, 15(8), 6531. https://doi.org/10.3390/su15086531
  8. Cheng, P., Wang, D., & Schaaf, P. (2022). A review on photothermal conversion of solar energy with nanomaterials and nanostructures: From fundamentals to applications. Advanced Sustainable Systems, 6(9), 2200115. https://doi.org/10.1002/adsu.202200115
  9. Creutzig, F., Agoston, P., Goldschmidt, J. C., Luderer, G., Nemet, G., & Pietzcker, R. C. (2017). The underestimated potential of solar energy to mitigate climate change. Nature Energy, 2(9), 1–9. https://doi.org/10.1038/nenergy.2017.140
  10. Dobigny, G., & Morand, S. (2022). Zoonotic emergence at the animal-environment-human interface: the forgotten urban socio-ecosystems. Peer Community Journal, 2.Durchblicker. (n.d.). Electricity in Burgenland. Retrieved April 28, 2023, from https://durchblicker.at/strompreis/burgenland
  11. Durchblicker. (n.d.). Electricity in Burgenland. Retrieved April 28, 2023, from https://durchblicker.at/strompreis/burgenland
  12. e-genius. (n.d.). Planning and dimensioning of a PV system. Retrieved April 26, 2023, from https://www.e-genius.at/lernfelder/erneuerbare-energien/grundlagen-der-photovoltaik/planung-und-dimensionierung-einer-pv-anlage
  13. Energie In Niederösterreich. (2023). Support for photovoltaic systems. Retrieved April 27, 2023, from https://www.energie-noe.at/foerderung-fuer-photovoltaik
  14. Eperjesi, Z. (2023). Magyarország és Ausztria energiagazdasága az átalakulóban lévő globális környezetben [Hungary and Austria’s energy economy in the transforming global environment]. Applied Analysis and Business Economics, 3, 86–100. https://doi.org/10.58423/2786-6742/2023-3-86-100
  15. European Commission. (2022). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions (in Hungarian). Brussels. Retrieved April 11, 2023, from https://eur-lex.europa.eu/legal-content/HU/TXT/HTML/?uri=CELEX:52022DC0221&from=EN
  16. Ferge, B. (2019). Types of solar panels – What is the difference? (in Hungarian). Hungarian Solar Panel and Solar Collector Association. Retrieved April 10, 2023, from https://www.mnnsz.hu/napelemek-fajtai/
  17. Fodor, L. (2017). Regulation of renewable energies in Austria (in Hungarian). REAL - MTA Library Repository. Retrieved April 12, 2023, from http://real.mtak.hu/39818/
  18. Greenwood, P., & Nikulin, M. (1988). Application of tests of chi-square type. Sankhya: The Indian Journal of Statistics, 50(4), 399-408. https://doi.org/10.1007/BF01129892
  19. Horváth, J. P., Tóth, T. (Dr.), & Somossy, S. É. (2021). International and domestic factors influencing household solar panel installations (in Hungarian). Space and Society, 35(3). Retrieved April 16, 2023, from https://tet.rkk.hu/index.php/TeT/article/view/3355
  20. HVG. (2022, July 14). This is how utility cost reduction decreases: Everything we know so far - and what we don’t (in Hungarian). Retrieved April 28, 2023, from https://hvg.hu/itthon/20220714_Igy_csokken_a_rezsicsokkentes_minden_amit_eddig_tudni_lehet__es_amit_nem
  21. HVG. (2023, October 11). A new 75-billion HUF residential solar and energy storage program may start on January 1 (in Hungarian). Retrieved October 14, 2023, from https://hvg.hu/zhvg/20231011_napelemes_palyazat_napenergia_plusz_program_allami_tamogatas_napelem_akkumulator
  22. Imteaz, M. A., & Ahsan, A. (2018). Solar panels: Real efficiencies, potential productions and payback periods for major Australian cities. Sustainable energy technologies and assessments, 25, 119-125.
  23. Ingenieurmagazin. (2023). Businesses achieve near self-sufficiency with photovoltaic and infrared heating. Retrieved April 29, 2023, from https://www.ingenieurmagazin.com/energie-umwelt/photovoltaik-und-infrarotheizung/3670/
  24. Jeong, J., Hong, D., & Youm, S. (2022). Optimization of the Decision-Making System for Advertising Strategies of Small Enterprises—Focusing on Company A. Systems, 10(4), 116.
  25. Józsa, L. (2003). Marketing – Advertising – Market Research I. Göttinger Kiadó.
  26. Juhász, Á., Láng, I., Blaskovics, G., Mika, J., Szépszó, G., Horányi, A., Dobi, I., & Nagy, Z. (2009). Renewable energies. Sprinter Kiadó Csoport.
  27. Kálmán, B. G., Dávid, L., & Malatyinszki, Sz. (2024c). The role of geoparks in sustainable tourism development: A case study approach. Geojournal of Tourism and Geosites (GTG), 17(4spl).
  28. Kálmán B. G., Malatyinszki Sz., Bárczi J., & Zéman Z. (2024a). Corrupción e Inclusión Financiera en Hungría y México [Corruption and Financial Inclusion in Hungary and Mexico, in Spanish]. Revista Mexicana de Economía y Finanzas Nueva Época // Mexican Journal of Economics and Finance (REMEF), 19(2). ID: e1015. http://doi.org/10.21919/remef.v19i2.1015
  29. Kálmán, B. G., Malatyinszki, Sz., Zugor, Zs., & Szőke, B. (2024b). Perceived corruption in light of green transition indicators. Revista de Gestão Social e Ambiental // Environmental and Social Management Journal (RGSA), 18(3), e07855. https://doi.org/10.24857/rgsa.v18n3-166
  30. Karda, S., Nagy-György, T., & Boros, I. (2023). Evolution of the payback period for energy-efficient residential buildings in Romania in the last decade. Sustainability, 15(11), 8986. https://doi.org/10.3390/su15118986
  31. Klima + Energie Fonds. (2022). Photovoltaic installations 2020–2022. Retrieved April 12, 2022, from https://www.klimafonds.gv.at/call/photovoltaik-anlagen-2022/
  32. Kraenzle, H., Rampp, M., Werner, D., Seitz, J., & Sharma, N. (2023). Prediction of the Growth of Renewable Energies in the European Union using Time Series Analysis. Journal of Energy Forecasting, 22(26), 341–352. https://doi.org/10.37394/23205.2023.22.26
  33. Li, Y., Zhang, T., Zhang, H., Cui, P., Fu, Z., Gao, Z., Geng, Q., Liu, Z., Zhu, Q., Li, H., & Li, M. (2022). Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy. Power Generation Technology, 43(3), 373–391. https://doi.org/10.12096/j.2096-4528.pgt.22052
  34. Liu, J., Hu, C., Kimber, A., & Wang, Z. (2020). Uses, cost-benefit analysis, and markets of energy storage systems for electric grid applications. Journal of Energy Storage, 32, 101731.
  35. Llewellyn, R., Cowie, J., & Fountas, G. (2021). Solar-powered active road studs and highway infrastructure: Effect on vehicle speeds. Energies, 14(21), 7209. https://doi.org/10.3390/en14217209
  36. Lund, H. (2010). Renewable energy systems. Academic Press.
  37. Mackay, D. J. C. (2011). Sustainable energy - Without the hot air (Hungarian translation: Vertis Zrt., Typotex Kiadó Kft.).
  38. Mousazadeh, H., Ghorbani, A., Azadi, H., Almani, F. A., Zangiabadi, A., Zhu, K., & Dávid, L. D. (2023). Developing sustainable behaviors for underground heritage tourism management: The case of Persian Qanats, a UNESCO World Heritage Property. Land (Basel), 12(4), 1–17. https://doi.org/10.3390/land12040808
  39. Németh E., Kálmán B. G., & Malatyinszki Sz. (2024). Pénzügyi biztonság Magyarországon: a 2023-as OECD-felmérés eredményeinek kettős nézőpontú elemzése [Financial security in Hungary: A dual perspective analysis of the 2023 OECD survey results, in Hungarian]. Statisztikai Szemle // Hungarian Statistical Review, 102(9), pp. 896–915. https://doi.org/10.20311/stat2024.09.hu0896
  40. Semberry, P. (Dr.), & Tóth, L. (2004). Traditional and renewable energies (in Hungarian). Szaktudás Kiadó Ház.
  41. Semkow, T., Freeman, N., Syed, U. F., Haines, D., Bari, A., Khan, A., Nishikawa, K., Khan, A., Burn, A. G., Li, X., & Chu, L. T. (2019). Chi-square distribution: New derivations and environmental application. Journal of Applied Mathematics and Physics, 7(8), 1212-1225. https://doi.org/10.4236/JAMP.2019.78122
  42. Şerban, A. C., & Lytras, M. D. (2020). Artificial intelligence for the smart renewable energy sector in Europe—Smart energy infrastructures for next-generation smart cities. IEEE Access, 8, 77364–77377. https://doi.org/10.1109/ACCESS.2020.2990033
  43. Sztankó, É. (2017). A villamosenergia-piac egységesítésének esélyei az Európai Unióban [The chances of unifying the electricity market in the European Union]. Competitio, 16(2), 3–22.
  44. Tries, M., Skrable, K., French, C., & Chabot, G. (1999). Basic applications of the chi-square statistic using counting data. Health Physics, 77(4), 420–423. https://doi.org/10.1097/00004032-199910000-00013
  45. Um, H. D., Choi, K. H., Hwang, I., Kim, S. H., Seo, K., & Lee, S. Y. (2017). Monolithically integrated, photo-rechargeable portable power sources based on miniaturized Si solar cells and printed solid-state lithium-ion batteries. Energy & Environmental Science, 10(4), 931–940. https://doi.org/10.1039/C6EE03208H
  46. Weaver, K., Morales, V. C., Dunn, S. L., Godde, K., & Weaver, P. (2017). Chi-square test. In Genetic Analysis in the Laboratory (pp. 123–130). https://doi.org/10.1002/9781119454205.CH9
  47. Weiner, C., & Szép, T. (2022). The Hungarian utility cost reduction programme: An impact assessment. Energy Strategy Reviews, 40, 100817. https://doi.org/10.1016/j.esr.2021.100817
  48. Wijesuriya, D. T. P., Wickramathilaka, K. D. S. H., Wijesinghe, L. S., Vithana, D. M., & Perera, H. R. (2017). Reduction of solar PV payback period using optimally placed reflectors. Energy Procedia, 134, 480–489. https://doi.org/10.1016/j.egypro.2017.09.561
  49. Li, Y., Zhang, T., Zhang, H., et al. (2022). Efficient and comprehensive photovoltaic/photothermal utilization technologies for solar energy. Power Generation Technology, 43(3), 373.
  50. Zsarnoczky, M., Zsarnoczky-Dulhazi, F., Adol, G. F. C., Barczak, M., & Dávid, L. D. (2019). Food safety challenges in the tourism processes. Rural Sustainability Research, 41, 26–31. https://doi.org/10.2478/plua-2019-0005


DOI: https://doi.org/10.24294/jipd10227

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Szilvia Módosné Szalai, Szonja Jenei, Elena Moreno-García, Vasantha Patibandla Lakshmi, Erika Tóthné Juhász, Csaba Bálint Illés

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.