Preliminary approach of oil spill model: A hindcasting with in situ data and numerical model in Balikpapan Bay, Indonesia

Andri Purwandani, Wiwin Ambarwulan, Aninda W. Rudiastuti, I Wayan Nurjaya, Widiatmaka Widiatmaka, Rahmat Abbas, Yudi Anantasena, Djoko Nugroho, Yusuf Surachman Djajadihardja, Ety Parwati, Maryani Hartuti, Syarif Budhiman

Article ID: 10173
Vol 9, Issue 1, 2025

VIEWS - 133 (Abstract)

Abstract


Oil spills (OS) in waters can have major consequences for the ecosystem and adjacent natural resources. Therefore, recognizing the OS spread pattern is crucial for supporting decision-making in disaster management. On 31 March 2018, an OS occurred in Balikpapan Bay, Indonesia, due to a ship’s anchor rupturing a seafloor crude oil petroleum pipe. The purpose of this study is to investigate the propagation of crude OS using coupled three-dimensional (3D) model from DHI MIKE software and remote sensing data from Sentinel-1 SAR (Synthetic Aperture Radar). MIKE3 FM predicts and simulates the 3D sea circulation, while MIKE OS models the path of oil’s fate concentration. The OS model could identify the temporal and spatial distribution of OS concentration in subsurface layers. To validate the model, in situ observations were made of oil stranded on the shore. On 1 April 2018, at 21:50 UTC, Sentinel-1 SAR detected an OS on the sea surface covering 203.40 km2. The OS model measures 137.52 km2. Both methods resulted in a synergistic OS exposure of 314.23 km2. Wind dominantly influenced the OS propagation on the sea surface, as detected by the SAR image, while tidal currents primarily affected the oil movement within the subsurface simulated by the OS model. Thus, the two approaches underscored the importance of synergizing the DHI MIKE model with remote sensing data to comprehensively understand OS distribution in semi-enclosed waters like Balikpapan Bay detected by SAR.


Keywords


3D hydrodynamic; MIKE3 FM; MIKE OS; oil fate; oil slick; oil stranding; Sentinel-1 SAR

Full Text:

PDF


References


Apiratikul, R., Pongpiachan, S., and Hashmi, M. Z. (2020). Health risk assessment of polycyclic aromatic hydrocarbons in coastal soils of Koh Samed Island (Thailand) after the oil spill incident in 2013. Marine Pollution Bulletin, 150, 110736. https://doi.org/10.1016/J.MARPOLBUL.2019.110736

Barreto, F. T. C., Dammann, D. O., Tessarolo, L. F., Skancke, J., Keghouche, I., Innocentini, V., Winther-Kaland, N., and Marton, L. (2021). Comparison of the Coupled Model for Oil spill Prediction (CMOP) and the Oil Spill Contingency and Response model (OSCAR) during the DeepSpill field experiment. Ocean & Coastal Management, 204, 105552. https://doi.org/10.1016/J.OCECOAMAN.2021.105552

Bejarano, A. C., Adams, J. E., McDowell, J., Parkerton, T. F., and Hanson, M. L. (2023). Recommendations for improving the reporting and communication of aquatic toxicity studies for oil spill planning, response, and environmental assessment. Aquatic Toxicology, 255, 106391. https://doi.org/10.1016/J.AQUATOX.2022.106391

Cao, Y., Zhang, B., Zhu, Z., Rostami, M., Dong, G., Ling, J., Lee, K., Greer, C. W., and Chen, B. (2021). Access-dispersion-recovery strategy for enhanced mitigation of heavy crude oil pollution using magnetic nanoparticles decorated bacteria. Bioresource Technology, 337, 125404. https://doi.org/https://doi.org/10.1016/j.biortech.2021.125404

Cheng, L., Li, Y., Qin, M., and Liu, B. (2024). A marine oil spill detection framework considering special disturbances using Sentinel-1 data in the Suez Canal. Marine Pollution Bulletin, 208(May), 117012. https://doi.org/10.1016/j.marpolbul.2024.117012

Daly, K. L., Remsen, A., Outram, D. M., Broadbent, H., Kramer, K., and Dubickas, K. (2021). Resilience of the zooplankton community in the northeast Gulf of Mexico during and after the Deepwater Horizon oil spill. Marine Pollution Bulletin, 163, 111882. https://doi.org/10.1016/j.marpolbul.2020.111882

De Padova, D., Mossa, M., Adamo, M., De Carolis, G., and Pasquariello, G. (2017). Synergistic use of an oil drift model and remote sensing observations for oil spill monitoring. Environmental Science and Pollution Research, 24(6), 5530–5543. https://doi.org/10.1007/s11356-016-8214-8

DHI. (2013a). MIKE 21 & MIKE 3 Flow Model FM (Hydrodynamic and Transport Module).

DHI. (2013b). MIKE 3 FLOW MODEL FM (ECO Lab / Oil Spill Module).

DHI. (2014a). DHI Oil Spill Model (Oil Spill Template Scientific Documentation). www.mikepoweredbydhi.com

DHI. (2014b). MIKE 3 FLOW MODEL Hydrostatic Version.

DHI. (2022). MIKE ECO Lab Scientific.

Fingas, M., and Brown, C. (2014). Review of oil spill remote sensing. Marine Pollution Bulletin, 83(1), 9–23. https://doi.org/10.1016/j.marpolbul.2014.03.059

Fingas, M., and Brown, C. E. (2017). Oil Spill Remote Sensing. In Oil Spill Science and Technology: Second Edition (pp. 305–385). Elsevier Inc. https://doi.org/10.1016/B978-0-12-809413-6.00005-9

French-McCay, D. P., Jayko, K., Li, Z., Spaulding, M. L., Crowley, D., Mendelsohn, D., Horn, M., Isaji, T., Kim, Y. H., Fontenault, J., and Rowe, J. J. (2021). Oil fate and mass balance for the Deepwater Horizon oil spill. Marine Pollution Bulletin, 171, 112681. https://doi.org/10.1016/j.marpolbul.2021.112681

Gao, Y., Li, F., Mao, L., Yan, N., Peng, C., Tao, H., and Zhang, D. (2022). Simulation on water quality of reservoir at construction phase by pollutant release from oxidation of waste rocks rich S and Fe. Environmental Technology and Innovation, 28(516), 102860. https://doi.org/10.1016/j.eti.2022.102860

Guan, X., Ma, J., Huang, J., Huang, R., Zhang, L., and Ma, Z. (2019). Impact of oceans on climate change in drylands. Science China Earth Sciences, 62(6), 891–908. https://doi.org/10.1007/s11430-018-9317-8

Gurumoorthi, K., Suneel, V., Trinadha Rao, V., Thomas, A. P., and Alex, M. J. (2021). Fate of MV Wakashio oil spill off Mauritius coast through modelling and remote sensing observations. Marine Pollution Bulletin, 172(August), 112892. https://doi.org/10.1016/j.marpolbul.2021.112892

Hair, J. F. (2011). Multivariate Data Analysis (Fifth Edit). PrenticeHall Inc.

Hidayat, R., Sartimbul, A., and Wibowo, M. (2021). Simulation of Oil Spill Pollution due to Tsunami in Cilacap, Central Java, Indonesia. International Journal on Advanced Science Engineering and Information Technology, 11(3). https://doi.org/10.18517/ijaseit.11.3.14264

Hong, J. H., Semprucci, F., Jeong, R., Kim, K., Lee, S., Jeon, D., Yoo, H., Kim, J., Kim, J., Yeom, J., Lee, S., Lee, K., and Lee, W. (2020). Meiobenthic nematodes in the assessment of the relative impact of human activities on coastal marine ecosystem. Environmental Monitoring and Assessment, 192(2), 1–13. https://doi.org/10.1007/S10661-019-8055-2/TABLES/2

Huang, K., Nie, W., and Luo, N. (2020). Scenario-Based Marine Oil Spill Emergency Response Using Hybrid Deep Reinforcement Learning and Case-Based Reasoning. Applied Sciences 2020, Vol. 10, Page 5269, 10(15), 5269. https://doi.org/10.3390/APP10155269

Khoi, D. N., Nguyen, V. T., Loi, P. T., Hong, N. V., Thuy, N. T. D. D., and Linh, D. Q. (2023). Development of an integrated tool responding to accidental oil spills in riverine and shoreline areas of Ho Chi Minh City, Vietnam. Environmental Impact Assessment Review, 99(December 2022), 106987. https://doi.org/10.1016/j.eiar.2022.106987

Lahjie, A. M., Nouval, B., Lahjie, A. A., Ruslim, Y., and Kristiningrum, R. (2019). Economic valuation from direct use of mangrove forest restoration in Balikpapan Bay, East Kalimantan, Indonesia. F1000Research, 8, 1–13. https://doi.org/10.12688/f1000research.17012.2

Li, C., Kim, D. jin, Park, S., Kim, J., and Song, J. (2023). A self-evolving deep learning algorithm for automatic oil spill detection in Sentinel-1 SAR images. Remote Sensing of Environment, 299(October), 113872. https://doi.org/10.1016/j.rse.2023.113872

Liu, Z., and Callies, U. (2019). Implications of using chemical dispersants to combat oil spills in the German Bight – Depiction by means of a Bayesian network. Environmental Pollution, 248, 609–620. https://doi.org/10.1016/J.ENVPOL.2019.02.063

Liu, Z., Chen, Q., Zheng, C., Han, Z., Cai, B., and Liu, Y. (2022). Oil spill modeling of Chengdao oilfield in the Chinese Bohai Sea. Ocean Engineering, 255(April), 111422. https://doi.org/10.1016/j.oceaneng.2022.111422

Melillos, G., and Hadjimitsis, D. G. (2021). Oil spill detection using sentinel 1 SAR data at Cyprus’s coasts. Https://Doi.Org/10.1117/12.2585886, 11729(April), 19. https://doi.org/10.1117/12.2585886

Motorin, D., Roozbahani, H., and Handroos, H. (2022). Development of a novel method for estimating and planning automatic skimmer operation in response to offshore oil spills. Journal of Environmental Management, 318(March), 115451. https://doi.org/10.1016/j.jenvman.2022.115451

Muin, M., Muslim, A. B., and Puspitasari, T. A. (2022). The Effect of Non-Linear Wave on Oil Spill Dispersion. IOP Conference Series: Earth and Environmental Science, 1065(1). https://doi.org/10.1088/1755-1315/1065/1/012006

Nixon, Z., and Michel, J. (2018). A Review of distribution and quantity of lingering subsurface oil from the Exxon Valdez Oil Spill. Deep-Sea Research Part II: Topical Studies in Oceanography, 147(July 2017), 20–26. https://doi.org/10.1016/j.dsr2.2017.07.009

Owens, E. H., Taylor, E., and Humphrey, B. (2008). The persistence and character of stranded oil on coarse-sediment beaches. Marine Pollution Bulletin, 56(1), 14–26. https://doi.org/10.1016/j.marpolbul.2007.08.020

Prastyani, R., and Basith, A. (2018). Utilisation of Sentinel-1 SAR Imagery for Oil Spill Mapping: A Case Study of Balikpapan Bay Oil Spill. JGISE: Journal of Geospatial Information Science and Engineering, 1(1), 22–26. https://doi.org/10.22146/jgise.38533

Rajendran, S., Vethamony, P., Sadooni, F. N., Al-Kuwari, H. A. S., Al-Khayat, J. A., Govil, H., and Nasir, S. (2021). Sentinel-2 image transformation methods for mapping oil spill – A case study with Wakashio oil spill in the Indian Ocean, off Mauritius. MethodsX, 8. https://doi.org/10.1016/j.mex.2021.101327

Rajendran, S., Vethamony, P., Sadooni, F. N., Al-Kuwari, H. A. S., Al-Khayat, J. A., Seegobin, V. O., Govil, H., and Nasir, S. (2021). Detection of Wakashio oil spill off Mauritius using Sentinel-1 and 2 data: Capability of sensors, image transformation methods and mapping. Environmental Pollution, 274, 116618. https://doi.org/10.1016/j.envpol.2021.116618

Rana, F. M., Adamo, M., Lucas, R., and Blonda, P. (2019). Sea surface wind retrieval in coastal areas by means of Sentinel-1 and numerical weather prediction model data. Remote Sensing of Environment, 225(March), 379–391. https://doi.org/10.1016/j.rse.2019.03.019

Spies, R. B., Mukhtasor, M., and Burns, K. A. (2017). The Montara Oil Spill: A 2009 Well Blowout in the Timor Sea. Archives of Environmental Contamination and Toxicology, 73(1), 55–62. https://doi.org/10.1007/S00244-016-0356-7/FIGURES/5

Sulma, S., Insan Nur Rahmi, K., Febrianti, N., and Sitorus, J. (2019). DETEKSI TUMPAHAN MINYAK MENGGUNAKAN METODE ADAPTIVE THRESHOLD DAN ANALISIS TEKSTUR PADA DATA SAR (Oil Spill Detection using Adaptive Threshold and Texture Analysis Methode on SAR Data). Majalah Ilmiah Globe, 21(1), 45–52. https://doi.org/10.24895/MIG.2019.25-1.925

Wang, C., Chen, B., Zhang, B., He, S., and Zhao, M. (2013). Fingerprint and weathering characteristics of crude oils after Dalian oil spill, China. Marine Pollution Bulletin, 71(1–2), 64–68. https://doi.org/10.1016/J.MARPOLBUL.2013.03.034

Weiskopf, S. R., Rubenstein, M. A., Crozier, L. G., Gaichas, S., Griffis, R., Halofsky, J. E., Hyde, K. J. W., Morelli, T. L., Morisette, J. T., Muñoz, R. C., Pershing, A. J., Peterson, D. L., Poudel, R., Staudinger, M. D., Sutton-Grier, A. E., Thompson, L., Vose, J., Weltzin, J. F., and Whyte, K. P. (2020). Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Science of the Total Environment, 733. https://doi.org/10.1016/j.scitotenv.2020.137782

Zu, T., and Gan, J. (2009). PROCESS-ORIENTED STUDY OF THE RIVER PLUME AND CIRCULATION IN THE PEARL RIVER ESTUARY: RESPONSE TO THE WIND AND TIDAL FORCING. In Advances in Geosciences (pp. 213–230). https://doi.org/10.1142/9789812836168_0015




DOI: https://doi.org/10.24294/jipd10173

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Andri Purwandani, Wiwin Ambarwulan, Aninda W. Rudiastuti, I Wayan Nurjaya, Widiatmaka Widiatmaka, Rahmat Abbas, Yudi Anantasena, Djoko Nugroho, Yusuf Surachman Djajadihardja, Ety Parwati, Maryani Hartuti, Syarif Budhiman

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.