Understanding how healthcare innovation is shaped by 5G technology: A comprehensive systematic review

Javier Gamboa-Cruzado, Kenner Echevarria-Otazo, Danna Medina-Montes, Saúl Arauco Esquivel, Dulio Oseda Gago, Ivar Farfán Muñoz

Article ID: 10171
Vol 8, Issue 16, 2024


Abstract


5G technology is transforming healthcare by enhancing precision, efficiency, and connectivity in diagnostics, treatments, and remote monitoring. Its integration with AI and IoT is set to revolutionize healthcare standards. This study aims to establish the state of the art in research on 5G technology and its impact on healthcare innovation. A systematic review of 79 papers from digital libraries such as IEEE Xplore, Scopus, Springer, ScienceDirect, and ResearchGate was conducted, covering publications from 2018 to 2024. Among the reviewed papers, China and India emerge as leaders in 5G health-related publications. Scopus, Springer Link, and IEEE Xplore house the majority of first-quartile (Q1) papers, whereas Science Direct and other sources show a higher proportion in the second quartile (Q2) and lower rankings. The predominance of Q1 papers in Scopus, Springer Link, and IEEE Xplore underscores these platforms’ influence and recognition, reflecting significant advancements in both practice and theory, and highlighting the expanding application of 5G technology in healthcare.


Keywords


5G technology; healthcare; telemedicine; 5G; digital health; systematic review

Full Text:

PDF


References


Ahad, A., Tahir, M., & Kok-Lim, A. (2019). 5G-based smart healthcare network: Architecture, taxonomy, challenges, and future research directions. IEEE Access, 7, 100747–100762. https://doi.org/10.1109/ACCESS.2019.2930628

Ahmed, I., Karvonen, H., Kumpuniemi, T., & Katz, M. (2020). Wireless communications for the hospital of the future: Requirements, challenges, and solutions. International Journal of Wireless Information Networks, 27(1), 4–17. https://doi.org/10.1007/s10776-019-00468-1

Al Qathrady, M., Saeed, M., Amin, R., et al. (2024). Smart healthcare: A dynamic blockchain-based trust management model using subarray algorithm. IEEE Access, 12, 49449–49463. https://doi.org/10.1109/ACCESS.2024.3383310

Ali, H. M., Bomgni, A. B., & Bukhari, S. A. C., et al. (2023). Power-aware fog-supported IoT network for healthcare infrastructure using swarm intelligence-based algorithms. Mobile Networks and Applications, 28(2), 824–838. https://doi.org/10.1007/s11036-023-02107-9

AlQahtani, S. A. (2023). An evaluation of e-health service performance through the integration of 5G IoT, fog, and cloud computing. Sensors, 23(11), 5006. https://doi.org/10.3390/s23115006

Al-Quayed, F., Humayun, M., & Tahir, S. (2023). Towards a secure technology-driven architecture for smart health insurance systems: An empirical study. Healthcare, 11(16), 2257. https://doi.org/10.3390/healthcare11162257

Altarturi, H. H. M., Nor, A. R. M., Jaafar, N. I., et al. (2023). A Bibliometric and Content Analysis of Technological Advancement Applications in Agricultural E-Commerce. Electronic Commerce Research. https://doi.org/10.1007/s10660-023-09670-z

Arque-Navarrete, I., Gamboa-Cruzado, J., Izquierdo Villavicencio, L., et al. (2022). Gestión Humana y Desempeño de los Enfermeros para la Atención de Pacientes con VIH/SIDA. Bol Malariol Salud Ambient, 62(6). https://doi.org/10.52808/bmsa.7e6.626.004

Arunglabi, R., Toding, A., Iradat Rapa, C., et al. (2022). 5G technology in smart healthcare and smart city development integration with deep learning architectures. International Journal of Communication Networks and Information Security, 14(3), 99–109. https://doi.org/10.17762/ijcnis.v14i3.5575

Ashleibta, A. M., Taha, A., & Khan, M. A., et al. (2021). 5G-enabled contactless multi-user presence and activity detection for independent assisted living. Scientific Reports, 11, 96689-7. https://doi.org/10.1038/s41598-021-96689-7

Baker, A., Brogan, P., Carare, O., et al. (2020). Economics at the FCC 2019–2020: Spectrum policy, universal service, inmate calling services, and telehealth. Review of Industrial Organization, 57, 827–858.

Barakabitze, A. A., Ahmad, A., & Mijumbi, R., et al. (2020). 5G network slicing using SDN and NFV: A survey of taxonomy, architectures, and future challenges. Computer Networks, 167, 106984. https://doi.org/10.1016/j.comnet.2019.106984

Bhat, J. R., AlQahtani, S. A., & Nekovee, M. (2023). FinTech enablers, use cases, and role of future Internet of Things. Journal of King Saud University - Computer and Information Sciences, 35(1), 87–101. https://doi.org/10.1016/j.jksuci.2022.08.033

Bilal, A., Liu, X., & Baig, T. I., et al. (2023). EdgeSVDNet: 5G-enabled detection and classification of vision-threatening diabetic retinopathy in retinal fundus images. Electronics, 12(19), 4094. https://doi.org/10.3390/electronics12194094

Bing-Yue, Z., Long, H., Xiao, C., et al. (2024). Digital health literacy and associated factors among internet users from China: A cross-sectional study. BMC Public Health, 24. https://doi.org/10.1186/s12889-024-18324-0

Cabanillas-Carbonell, M., Pérez-Martínez, J., Yáñez, J. A., et al. (2023). 5G Technology in the Digital Transformation of Healthcare: A Systematic Review. 2023. https://doi.org/10.3390/su15043178

Cardoso, L. F. de S., Kimura, B. Y. L., & Zorzal, E. R. (2024). Towards augmented and mixed reality on future mobile networks. Multimedia Tools and Applications, 83(3), 9067–9102. https://doi.org/10.1007/s11042-023-15301-4

Chamola, V., Goyal, A., Sharma, P., et al. (2023). Artificial intelligence-assisted blockchain-based framework for smart and secure EMR management. Neural Computing and Applications, 35(31), 22959–22969. https://doi.org/10.1007/s00521-022-07087-7

Chkioua, L., Amri, Y., Chaima, S., et al. (2021). Fucosidosis in Tunisian patients: Mutational analysis and homology-based modeling of FUCA1 enzyme. BMC Medical Genomics, 14, 208.

de Oliveira, W., Batista, J. O. R., Jr., Novais, T., et al. (2023). OpenCare5G: O-RAN in Private Network for Digital Health Applications. Sensors, 23(2), Article 1047. https://doi.org/10.3390/s23021047

de Paula Ferreira, W., Maniçoba da Silva, A., Yoshio Tanaka, W., et al. (2016). Lean & Healthcare Organizations - A Systematic Literature Review with Bibliometric Analysis on Application of Lean Healthcare in Brazil. Brazilian Journal of Operations & Production Management, 13(4), 436–446. https://doi.org/10.14488/BJOPM.2016.v13.n4.a2

Duan, S., Liu, L., Chen, Y., et al. (2021). A 5G-powered robot-assisted teleultrasound diagnostic system in an intensive care unit. Critical Care, 25, 134. https://doi.org/10.1186/s13054-021-03563-z

Ekiyor, A., & Karademir, G. (2023). Waiting Time Dynamics in Healthcare Management: A Comprehensive Bibliometric Review. Presented at the International Health Services Congress, Mersin, Turkey.

Famá, F., Faria, J. N., & Portugal, D. (2022). An IoT-based interoperable architecture for wireless biomonitoring of patients with sensor patches. Internet of Things (Netherlands), 19, 100547. https://doi.org/10.1016/j.iot.2022.100547

Ferruzo, D. A., Gamboa-Cruzado, J., Hidalgo Sánchez, A., et al. (2022). Impact of Public-Private Partnerships on Patient Care in Health Service Provider Institutions. Universidad y Sociedad, 14(S4).

Frikha, H., Kamoun-Abid, F., Meddeb-Makhoulf, A., et al. (2024). A smart emergency response system based on deep learning and Kalman filter: The case of COVID-19. Indonesian Journal of Electrical Engineering and Computer Science, 34(1), 630. https://doi.org/10.11591/ijeecs.v34.i1.pp630-640

Gamboa-Cruzado, J., Carbajal-Jiménez, P., Romero-Villón, M., et al. (2022). Chatbots for Customer Service: A Comprehensive Systematic Literature Review. 2022.

Gamboa-Cruzado, J., Cuya-Chuica, L., López-Goycochea, J., et al. (2024). Impact of 5G Technology on Cybersecurity: A Comprehensive Systematic and Bibliometric Review. Computación y Sistemas (CyS), 28(2), 367–386. https://doi.org/10.13053/CyS-28-2-4734

Gamboa-Cruzado, J., Payi-Quispe, A., Rivero, C. A., et al. (2023). 5G Technology and its Impact on the Use of Online Videogames: A Comprehensive Systematic Review. J Theor Appl Inf Technol, 101(2).

García, F. M., Moraleda, R., Schez-Sobrino, S., et al. (2023). Health-5G: A mixed reality-based system for remote medical assistance in emergency situations. IEEE Access, 11, 59016–59032. https://doi.org/10.1109/ACCESS.2023.3285420

George, J., Uko, M., Ekpo, S., et al. (2023). Design of an elliptically-slotted patch antenna for multi-purpose wireless Wi-Fi and biosensing applications. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 6, 100368. https://doi.org/10.1016/j.prime.2023.100368

Gupta, N., Juneja, P. K., Sharma, S., & Garg, U. (2023). An intelligent technique for network resource management and analysis of 5G-IoT smart healthcare application. Journal of Autonomous Intelligence, 7(1), 1–13. https://doi.org/10.32629/jai.v7i1.694

Gupta, R., & Gupta, J. (2024). Privacy and convergence analysis for the Internet of Medical Things using massive MIMO. e-Prime - Advances in Electrical Engineering, Electronics and Energy, 8, 100522. https://doi.org/10.1016/j.prime.2024.100522

Hameed, K., Bajwa, I. S., Sarwar, N., et al. (2021). Integration of 5G and blockchain technologies in smart telemedicine using IoT. Journal of Healthcare Engineering, 2021, 1–18. https://doi.org/10.1155/2021/8814364

Havey, N. F. (2020). Partisan public health: How does political ideology influence support for COVID-19 related misinformation? Journal of Computational Social Science, 3(2), 319–342. https://doi.org/10.1007/s42001-020-00089-2

He, T., Yin-Ying, P., Ya-Qin, Z., et al. (2023). 5G-based telerobotic ultrasound system improves access to breast examination in rural and remote areas: A prospective and two-scenario study. Diagnostics (Basel), 13(3), 362. https://doi.org/10.3390/diagnostics13030362

Hu, J., Liang, W., Hosam, O., et al. (2022). 5GSS: A framework for 5G-secure-smart healthcare monitoring. Connection Science, 34(1), 139–161. https://doi.org/10.1080/09540091.2021.1977243

Humayun, M., Almufareh, M. F., Al-Quayed, F., et al. (2023). Improving healthcare facilities in remote areas using cutting-edge technologies. Applied Sciences, 13(11), 6479. https://doi.org/10.3390/app13116479

Humayun, M., Alsirhani, A., Alserhani, F., et al. (2024). Transformative synergy: SSEHCET—Bridging mobile edge computing and AI for enhanced eHealth security and efficiency. Journal of Cloud Computing, 13(1), 37. https://doi.org/10.1186/s13677-024-00602-2

I-Hsien, L., Meng-Huan, L., Hsiao-Ching, H., et al. (2023). 5G-based smart healthcare and mobile network security: Combating fake base stations. Applied Sciences, 13(20). https://doi.org/10.3390/app132011565

Islam, M. A., Islam, M. A., Jacky, M. A. H., et al. (2023). Distributed ledger technology-based integrated healthcare solution for Bangladesh. IEEE Access, 11, 51527–51556. https://doi.org/10.1109/ACCESS.2023.3279724

Isravel, D. P., Silas, S., Kathrine, J. W., et al. (2024). Multivariate forecasting of network traffic in SDN-based ubiquitous healthcare system. IEEE Open Journal of Communications Society, 5, 1537–1550. https://doi.org/10.1109/OJCOMS.2024.3373698

Jabbar, S. F., Mohsin, N. S., Tawfeq, J. F., et al. (2023). A novel data offloading scheme for QoS optimization in 5G based internet of medical things. Bulletin of Electrical Engineering and Informatics, 12(5), 3124–3133. https://doi.org/10.11591/eei.v12i5.5069

Jaffer, S. S., Hussain, A., Qureshi, M. A., et al. (2023). Reliable and cost-efficient protection scheme for 5G fronthaul/backhaul network. Heliyon, 9(3), e14215. https://doi.org/10.1016/j.heliyon.2023.e14215

Karad, K. V., & Hendre, V. S. (2023). A flower bud-shaped flexible UWB antenna for healthcare applications. Eurasip Journal on Wireless Communications and Networking, 2023(1). https://doi.org/10.1186/s13638-023-02239-2

Khan, S., Khan, S., Ali, Y., et al. (2022). Highly accurate and reliable wireless network slicing in 5th generation networks: A hybrid deep learning approach. Journal of Network and Systems Management, 30(2), 1–22. https://doi.org/10.1007/s10922-021-09636-2

Khowaja, S. A., Khuwaja, P., Dev, K., et al. (2023). VIRFIM: An AI and Internet of Medical Things-driven framework for healthcare using smart sensors. Neural Computing and Applications, 35(22), 16175–16192. https://doi.org/10.1007/s00521-021-06434-4

Kitchenham, B., Brereton, P., Budgen, D., et al. (2013). A Systematic Review of Systematic Review Process Research in Software Engineering. Information and Software Technology, 55(12), 2049–2075. https://doi.org/10.1016/j.infsof.2013.07.008

Kliks, A., Musznicki, B., Kowalik, K., et al. (2018). Perspectives for resource sharing in 5G networks. Telecommunication Systems, 68(4), 605–619. https://doi.org/10.1007/s11235-017-0411-3

Kumar, A., Gaur, N., & Nanthaamornphong, A. (2024). Improving the latency for 5G/B5G based smart healthcare connectivity in rural area. Scientific Reports, 14(1), 1–14. https://doi.org/10.1038/s41598-024-57641-7

Kumar, A., Nanthaamornphong, A., Selvi, R., et al. (2023). Evaluation of 5G techniques affecting the deployment of smart hospital infrastructure: Understanding 5G, AI and IoT role in smart hospital. Alexandria Engineering Journal, 83, 335–354. https://doi.org/10.1016/j.aej.2023.10.065

Le, D. N., Parvathy, V. S., Gupta, D., et al. (2021). IoT enabled depthwise separable convolution neural network with deep support vector machine for COVID-19 diagnosis and classification. International Journal of Machine Learning and Cybernetics, 12(11), 3235–3248. https://doi.org/10.1007/s13042-020-01248-7

Lu, J., Ling, K., Zhong, W., et al. (2023). Construction of a 5G-based, three-dimensional, and efficiently connected emergency medical management system. Heliyon, 9(3), e13826. https://doi.org/10.1016/j.heliyon.2023.e13826

Masood, A., Sheng, B., Li, P., et al. (2018). Computer-assisted decision support system in pulmonary cancer detection and stage classification on CT images. Journal of Biomedical Informatics, 79, 117–128. https://doi.org/10.1016/j.jbi.2018.01.005

Minopoulos, G. M., Memos, V. A., Stergiou, K. D., et al. (2023). A medical image visualization technique assisted with AI-based haptic feedback for robotic surgery and healthcare. Applied Sciences, 13(6), 3592. https://doi.org/10.3390/app13063592

Moustris, G., Tzafestas, C., & Konstantinidis, K. (2023). A long-distance telesurgical demonstration on robotic surgery phantoms over 5G. International Journal of Computer Assisted Radiology and Surgery, 18(9), 1577–1587. https://doi.org/10.1007/s11548-023-02913-2

Nasser, N., Emad-ul-Haq, Q., Imran, M., et al. (2023). A smart healthcare framework for detection and monitoring of COVID-19 using IoT and cloud computing. Neural Computing and Applications, 35(19), 13775–13789. https://doi.org/10.1007/s00521-021-06396-7

Niranga, G. D. H., Devidas, A. R., & Ramesh, M. V. (2024). NeoCommLight: A visible light communication system for RF-restricted NICUs. IEEE Access, 12, 12827–12842. https://doi.org/10.1109/ACCESS.2024.3355946

Oncebay-López, J., Gamboa-Cruzado, J., Sánchez, A. H., et al. (2023). Impact of Mobile Applications on Customer Service for the Tourism Sector: A Systematic Review and Neutrosophic Dematel. International Journal of Neutrosophic Science, 20(4). https://doi.org/10.54216/IJNS.200411

Pei, J., & Cheng, L. (2024). Representations of 5G in the Chinese and British press: A corpus-assisted critical discourse analysis. Humanities and Social Sciences Communications, 11(1), 400. https://doi.org/10.1057/s41599-024-02896-8

Pi-Yun, C., Yu-Cheng, C., Zi-Heng, Z., et al. (2024). Information security and artificial intelligence-assisted diagnosis in an internet of medical thing system (IoMTS). IEEE Access, 12, 335137. https://doi.org/10.1109/ACCESS.2024.3351373

Pradhan, B., Das, S., Roy, D. S., et al. (2023). An AI-assisted smart healthcare system using 5G communication. IEEE Access, 11, 108339–108355. https://doi.org/10.1109/ACCESS.2023.3317174

Priya, B., & Malhotra, J. (2023). 5GhNet: An intelligent QoE aware RAT selection framework for 5G-enabled healthcare network. Journal of Ambient Intelligence and Humanized Computing, 14(7), 8387–8408. https://doi.org/10.1007/s12652-021-03606-x

Priya, B., & Malhotra, J. (2023). iMnet: Intelligent RAT selection framework for 5G-enabled IoMT network. Wireless Personal Communications, 129(2), 911–932. https://doi.org/10.1007/s11277-022-10163-9

Rahman, A., Wadud, M. A. H., Islam, M. J., et al. (2024). Internet of medical things and blockchain-enabled patient-centric agent through SDN for remote patient monitoring in 5G network. Scientific Reports, 14, Article 5297. https://doi.org/10.1038/s41598-024-55662-w

Rejeb, A., Rejeb, K., Simske, S. J., et al. (2022). Blockchain Technology in the Smart City: A Bibliometric Review. Qual Quant, 56(5). https://doi.org/10.1007/s11135-021-01251-2

Sabban, A. (2022). Wearable circular polarized antennas for health care, 5G, energy harvesting, and IoT systems. Electronics, 11(3), 427. https://doi.org/10.3390/electronics11030427

Sabban, A. (2024). Novel meta-fractal wearable sensors and antennas for medical, communication, 5G, and IoT applications. Fractal and Fractional, 8(2), 100. https://doi.org/10.3390/fractalfract8020100

Sabuj, S. R., Rubaiat, M., Iqbal, M., et al. (2022). Machine-type communications in NOMA-based terahertz wireless networks. International Journal of Intelligent Networks, 3, 31–47. https://doi.org/10.1016/j.ijin.2022.04.002

Sharma, D., Kanaujia, B. K., Kumar, S., et al. (2023). Low-loss MIMO antenna wireless communication system for 5G cardiac pacemakers. Scientific Reports, 13(1), 1–16. https://doi.org/10.1038/s41598-023-36209-x

Shorfuzzaman, M. (2023). IoT-enabled stacked ensemble of deep neural networks for the diagnosis of COVID-19 using chest CT scans. Computing, 105(4), 887–908. https://doi.org/10.1007/s00607-021-00971-5

Shukla, A. K., Seth, T., & Muhuri, P. K. (2023). Artificial intelligence-centric scientific research on COVID-19: An analysis based on scientometrics data. Multimedia Tools and Applications, 82(21), 32755–32787. https://doi.org/10.1007/s11042-023-14642-4

Subramanian, G., & Thampy, A. S. (2021). Implementation of blockchain consortium to prioritize diabetes patients’ healthcare in pandemic situations. IEEE Access, 9, 162459–162475. https://doi.org/10.1109/ACCESS.2021.3132302

Tan, H., & Chung, I. (2019). Secure authentication and group key distribution scheme for WBANs based on smartphone ECG sensor. IEEE Access, 7, 151459–151474. https://doi.org/10.1109/ACCESS.2019.2948207

Tan, L., Yu, K., Bashir, A. K., et al. (2023). Toward real-time and efficient cardiovascular monitoring for COVID-19 patients by 5G-enabled wearable medical devices: A deep learning approach. Neural Computing and Applications, 35(19), 13921–13934. https://doi.org/10.1007/s00521-021-06219-9

Tang, X., Zhao, L., Chong, J., et al. (2021). 5G-based smart healthcare system designing and field trial in hospitals. IET Communications, 15(18), 2193–2201. https://doi.org/10.1049/cmu2.12300

Taniguchi, Y., Ikegami, Y., Fujikawa, H., et al. (2022). Counseling (ro)bot as a use case for 5G/6G. Complex & Intelligent Systems, 8, 3899–3917. https://doi.org/10.1007/s40747-022-00664-2

Tian, C., Cao, H., Garg, S., et al. (2023). 5G in healthcare: Matching game-empowered intelligent medical network slicing. Alexandria Engineering Journal, 77, 95–107. https://doi.org/10.1016/j.aej.2023.06.041

Tuan-Vinh, L., & Chien-Lung, H. (2021). An anonymous key distribution scheme for group healthcare services in 5G-enabled multi-server environments. IEEE Access, 9, 53408–53422. https://doi.org/10.1109/ACCESS.2021.3070641

Tzu-Wei, L. (2022). A privacy-preserved ID-based secure communication scheme in 5G-IoT telemedicine systems. Sensors, 22(18), 6838. https://doi.org/10.3390/s22186838

Tzu-Wei, L., & Chien-Lung, H. (2021). FAIDM for medical privacy protection in 5G telemedicine systems. Applied Sciences, 11(3), 1155. https://doi.org/10.3390/app11031155

Vedaei, S. S., Fotovvat, A., Mohebbiian, M. R., et al. (2020). COVID-SAFE: An IoT-based system for automated health monitoring and surveillance in post-pandemic life. IEEE Access, 8, 188538–188549. https://doi.org/10.1109/ACCESS.2020.3030194

Vergütz, A., Prates, N. G., Schwengber, B. H., et al. (2020). An architecture for the performance management of smart healthcare applications. Sensors, 20(19), 5566. https://doi.org/10.3390/s20195566

Verma, D., Singh, K. R. B., Yadav, A. K., et al. (2022). Internet of things (IoT) in nano-integrated wearable biosensor devices for healthcare applications. Biosensors and Bioelectronics: X, 11, Article 100153. https://doi.org/10.1016/j.biosx.2022.100153

Villavicencio, H. E., Gamboa-Cruzado, J., López-Goycochea, J., et al. (2024). The Role of Artificial Intelligence in the Diagnosis of Neoplastic Diseases: A Systematic and Bibliometric Review. International Journal of Online and Biomedical Engineering, 20(4). https://doi.org/10.3991/ijoe.v20i04.45429

Wang, Z., Kong, L., Luo, G., et al. (2022). Clinical impact of the PAI-1 4G/5G polymorphism in Chinese patients with venous thromboembolism. Thrombosis Journal, 20(1), Article 68. https://doi.org/10.1186/s12959-022-00430-x

Ya-Qin, Z., Hao-Hao, Y., Tian, T., et al. (2022). Clinical application of a 5G-based telerobotic ultrasound system for thyroid examination on a rural island: A prospective study. Endocrine, 76(3), 620–634. https://doi.org/10.1007/s12020-022-03011-0

Ye, R., Zhou, X., Shao, F., et al. (2021). Feasibility of a 5G-based robot-assisted remote ultrasound system for cardiopulmonary assessment of patients with coronavirus disease 2019. Chest, 159(1), 270–281. https://doi.org/10.1016/j.chest.2020.06.068

Zhang, Y., Chen, G., Du, H., et al. (2020). Real-Time Remote Health Monitoring System Driven by 5G MEC-IoT. Electronics, 9(11), 1753. https://doi.org/10.3390/electronics9111753

Zhang, Y., Wang, X., Han, N., et al. (2021). Ensemble Learning Based Postpartum Hemorrhage Diagnosis for 5G Remote Healthcare. IEEE Access, 9, 18538–18548. https://doi.org/10.1109/ACCESS.2021.3051215

Zhao-Xia, L., Peng, Q., Dan, B., et al. (2021). Application of AI and IoT in clinical medicine: Summary and challenges. Current Medical Science, 41(6), 1134–1150. https://doi.org/10.1007/s11596-021-2486-z




DOI: https://doi.org/10.24294/jipd10171

Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Javier Gamboa-Cruzado, Kenner Echevarria-Otazo, Danna Medina-Montes, Saúl Arauco Esquivel, Dulio Oseda Gago, Ivar Farfán Muñoz

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.