Leveraging predictive analytics to enhance food safety risk management in supply chains: A conceptual framework

Reason Masengu, Chenjerai Muchenje, Benson Ruzive

Article ID: 10114
Vol 9, Issue 1, 2025

VIEWS - 82 (Abstract)

Abstract


Food safety in supply chains remains a critical concern due to the complexity of global distribution networks. This study develops a conceptual framework to evaluate how food safety risks influence supply chain performance through predictive analytics. The framework identifies and minimizes food safety risks before they cause serious problems. The study examines the impact of food safety practices, supply chain transparency, and technological integration on adopting predictive analytics. To illustrate the complex dynamics of food safety and supply chain performance, the study presents supply chain transparency, technological integration, and food safety practices and procedures as independent variables and predictive analytics as a mediator. The results show that supply chain managers’ capacity to anticipate and control risks related to food safety can be improved by predictive analytics, leading to safer food production and distribution methods. The research recommends that businesses create scalable cloud-based predictive model solutions, combine data sources, and employ cutting-edge AI and machine learning tools. Companies should also note that strong, data-driven approaches to food safety require cooperative data sharing, regulatory compliance, training initiatives and ongoing improvement.


Keywords


food safety; supply chain performance; predictive analytics; supply chain efficiency

Full Text:

PDF


References


Abdolazimi, O., Salehi Esfandarani, M., Salehi, M., & Shishebori, D. (2020). Robust design of a multi-objective closed-loop supply chain by integrating on-time delivery, cost, and environmental aspects, case study of a Tire Factory. Journal of Cleaner Production, 264, 121566. https://doi.org/10.1016/J.JCLEPRO.2020.121566

Adedoyin Tolulope Oyewole, Chinwe Chinazo Okoye, Onyeka Chrisanctus Ofodile, & Emuesiri Ejairu. (2024). Reviewing predictive analytics in supply chain management: Applications and benefits. World Journal of Advanced Research and Reviews, 21(3), 568–574. https://doi.org/10.30574/wjarr.2024.21.3.0673

Ali, K., Showkat, N., & Chisti, K. A. (2022). Impact of Inventory Management on Operating Profits: Evidence from India. Journal of Economics, Management and Trade, 28(9), 22–26. https://doi.org/10.9734/jemt/2022/v28i930435

Alkahtani, M., Omair, M., Khalid, Q. S., Hussain, G., Ahmad, I., & Pruncu, C. (2021). A covid-19 supply chain management strategy based on variable production under uncertain environment conditions. International Journal of Environmental Research and Public Health, 18(4), 1–23. https://doi.org/10.3390/ijerph18041662

Al-Mhasnah, A. M., Salleh, F., Afthanorhan, A., & Ghazali, P. L. (2018). The relationship between services quality and customer satisfaction among Jordanian healthcare sector. Management Science Letters, 8(12), 1413–1420. https://doi.org/10.5267/j.msl.2018.10.003

Andarwati, M. (2018). Analysis of Factors Affecting the Successof Accounting Information Systems Based on Information Technology on SME Managementsas Accounting InformationEnd User. 98.

Anisatul, A., & Handoko, F. N. (2020). The Application of Haccp (Hazard Analysis Critical Control Point) in Food Production Department. Jurnal Sosial Humaniora Terapan, 2(2). https://doi.org/10.7454/jsht.v2i2.84

Anser, M. K., Khan, M. A., Awan, U., Batool, R., Zaman, K., Imran, M., Sasmoko, Indrianti, Y., Khan, A., & Bakar, Z. A. (2020). The role of technological innovation in a dynamic model of the environmental supply chain curve: Evidence from a panel of 102 countries. Processes, 8(9). https://doi.org/10.3390/pr8091033

Apeji, U. D., & Sunmola, F. T. (2022). ScienceDirect ScienceDirect Principles and Factors Influencing Visibility in Sustainable Supply Principles and Factors Influencing Visibility in Sustainable Supply Chains Chains. Procedia Computer Science, 200, 1516–1527. https://doi.org/10.1016/j.procs.2022.01.353

Assery, S., Tjahjono, H. K., Palupi, M., & Dzakiyullah, N. R. (2020). The role of conflict resolution on supply chain performance. International Journal of Scientific and Technology Research, 9(3), 4007–4011.

Balwant, P. T. (2020). Training and Development of Instructor-Leadership : An Instructional Systems Design Approach. Journal of Human Services: Training, Research, and Practice Volume, 6(1).

Belhadi, A., Kamble, S. S., Venkatesh, M., Chiappetta Jabbour, C. J., & Benkhati, I. (2022). Building supply chain resilience and efficiency through additive manufacturing: An ambidextrous perspective on the dynamic capability view. International Journal of Production Economics, 249, 108516. https://doi.org/10.1016/J.IJPE.2022.108516

Benzidia, S., Makaoui, N., & Bentahar, O. (2021). The impact of big data analytics and artificial intelligence on green supply chain process integration and hospital environmental performance. Technological Forecasting and Social Change, 165, 120557. https://doi.org/10.1016/J.TECHFORE.2020.120557

Bratt, C., & Sroufe, R. (2021). Implementing Strategic Sustainable Supply Chain Management.

Brun, A., Karaosman, H., & Barresi, T. (2020). Supply chain collaboration for transparency. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114429

Bui, T. D., Tsai, F. M., Tseng, M. L., Tan, R. R., Yu, K. D. S., & Lim, M. K. (2021). Sustainable supply chain management towards disruption and organizational ambidexterity: A data driven analysis. Sustainable Production and Consumption, 26, 373–410. https://doi.org/10.1016/J.SPC.2020.09.017

Côrte-Real, N., Ruivo, P., & Oliveira, T. (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information & Management, 57(1), 103141. https://doi.org/10.1016/J.IM.2019.01.003

Dai, B., Nu, Y., Xie, X., & Li, J. (2021). Interactions of traceability and reliability optimization in a competitive supply chain with product recall. European Journal of Operational Research, 290(1), 116–131. https://doi.org/10.1016/J.EJOR.2020.08.003

De Boeck, E., Jacxsens, L., Kurban, S., & Wallace, C. A. (2020). Evaluation of a simplified approach in food safety management systems in the retail sector: A case study of butcheries in Flanders, Belgium and Lancashire, UK. Food Control, 108. https://doi.org/10.1016/j.foodcont.2019.106844

Del Giudice, M., Chierici, R., Mazzucchelli, A., & Fiano, F. (2020). Supply chain management in the era of circular economy: the moderating effect of big data. International Journal of Logistics Management, 32(2), 337–356. https://doi.org/10.1108/IJLM-03-2020-0119

Dias, E. G., de Oliveira, L. K., & Isler, C. A. (2022). Assessing the effects of delivery attributes on e-shopping consumer behaviour. Sustainability (Switzerland), 14(1), 1–19. https://doi.org/10.3390/su14010013

Dominguez, R., Cannella, S., Ponte, B., & Framinan, J. M. (2020). On the dynamics of closed-loop supply chains under remanufacturing lead time variability. Omega, 97, 102106. https://doi.org/10.1016/J.OMEGA.2019.102106

Durach, C. F., Blesik, T., von Düring, M., & Bick, M. (2021). Blockchain Applications in Supply Chain Transactions. Journal of Business Logistics, 42(1), 7–24. https://doi.org/10.1111/jbl.12238

Franke, G., & Sarstedt, M. (2019). Heuristics versus statistics in discriminant validity testing: a comparison of four procedures. Internet Research, 29(3), 430–447. https://doi.org/10.1108/INTR-12-2017-0515/FULL/XML

Gołaś, Z. (2020). The effect of inventory management on profitability: Evidence from the Polish food industry: Case study. Agricultural Economics (Czech Republic), 66(5), 234–242. https://doi.org/10.17221/370/2019-AGRICECON

Gray, G., Cooke, G., Murnion, P., Rooney, P., & O’Rourke, K. C. (2022). Stakeholders’ insights on learning analytics: Perspectives of students and staff. Computers & Education, 187, 104550. https://doi.org/10.1016/J.COMPEDU.2022.104550

Gupta, P., Hurburgh, C. R., Bowers, E. L., & Mosher, G. A. (2022). Application of fault tree analysis: Failure mode and effect analysis to evaluate critical factors influencing non-GM segregation in the US grain and feed supply chain. Cereal and Grains Association, 99(6), 1394–1413. https://doi.org/10.1002/cche.10601

Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2–24. https://doi.org/10.1108/EBR-11-2018-0203/FULL/XML

Hashmi, A. (2022). Factors Affecting the Supply Chain Resilience and Supply Chain Performance. South Asian Journal of Operations and Logistics, 1(2), 53–73. https://doi.org/10.57044/sajol.2022.1.2.2212

Hazen, B. T., Russo, I., Confente, I., & Pellathy, D. (2020). Supply chain management for circular economy: conceptual framework and research agenda. International Journal of Logistics Management, 32(2), 510–537. https://doi.org/10.1108/IJLM-12-2019-0332

Helo, P., & Shamsuzzoha, A. H. M. (2020). Real-time supply chain—A blockchain architecture for project deliveries. Robotics and Computer-Integrated Manufacturing, 63, 101909. https://doi.org/10.1016/J.RCIM.2019.101909

Ibrahim, O. O. (2020). Introduction to Hazard Analysis and Critical Control Points (HACCP). EC Microbiology, 4, 93–99.

Insfran-Rivarola, A., Tlapa, D., Limon-Romero, J., Baez-Lopez, Y., Miranda-Ackerman, M., Arredondo-Soto, K., & Ontiveros, S. (2020). A systematic review and meta-analysis of the effects of food safety and hygiene training on food handlers. Foods, 9(9). https://doi.org/10.3390/foods9091169

Joseph, H. M. S. C. R. S. G. (2024). Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage Publication Inc.

Kamboj, S., Gupta, N., Bandral, J. D., Gandotra, G., & Anjum, N. (2020). Food safety and hygiene: A review. International Journal of Chemical Studies, 8(2), 358–368. https://doi.org/10.22271/chemi.2020.v8.i2f.8794

Kondaveeti, H. K., Simhadri, C. G., Yasaswini, G. L., & Shanthi, G. K. (2023). The use of artificial intelligence in the food industry: From recipe generation to quality control. Impactful Technologies Transforming the Food Industry, 116–134. https://doi.org/10.4018/978-1-6684-9094-5.CH008

Kravenkit, S., & So-In, C. (2022). Blockchain-Based Traceability System for Product Recall. IEEE Access, 10(September), 95132–95150. https://doi.org/10.1109/ACCESS.2022.3204750

Krejcie, R., & Morgan, D. W. (1970). Determining Sample Size for Research Activities. Educational and Psychological Measurement, 30, 607-610. http://www.sciepub.com/reference/145556

Kudashkina, K., Corradini, M. G., Thirunathan, P., Yada, R. Y., & Fraser, E. D. G. (2022). Artificial Intelligence technology in food safety: A behavioral approach. Trends in Food Science & Technology, 123, 376–381. https://doi.org/10.1016/J.TIFS.2022.03.021

Kula, E., Greuter, E., Van Deursen, A., & Georgios, G. (2021). Factors Affecting On-Time Delivery in Large-Scale Agile Software Development. IEEE Transactions on Software Engineering, 48(9), 3573–3592. https://doi.org/10.1109/TSE.2021.3101192

Kumar, V., & Ramachandran, D. (2021). Developing firms’ growth approaches as a multidimensional decision to enhance key stakeholders’ wellbeing. International Journal of Research in Marketing, 38(2), 402–424. https://doi.org/10.1016/J.IJRESMAR.2020.09.004

Lai, P. C. (2017). THE LITERATURE REVIEW OF TECHNOLOGY ADOPTION MODELS AND THEORIES FOR THE NOVELTY TECHNOLOGY. Journal of Information Systems and Technology Management, 14(1), 21–38. https://doi.org/10.4301/S1807-17752017000100002

Lee, C. S., Cheang, P. Y. S., & Moslehpour, M. (2022). Predictive Analytics in Business Analytics: Decision Tree. Advances in Decision Sciences, 26(1), 1–29. https://doi.org/10.47654/V26Y2022I1P1-30

Lee, K. L., Romzi, P. N., Hanaysha, J. R., Alzoubi, H. M., & Alshurideh, M. (2022). Investigating the impact of benefits and challenges of IOT adoption on supply chain performance and organizational performance: An empirical study in Malaysia. Uncertain Supply Chain Management, 10(2), 537–550. https://doi.org/10.5267/j.uscm.2021.11.009

Liu, H., Fan, L., & Shao, Z. (2021). Threshold effects of energy consumption, technological innovation, and supply chain management on enterprise performance in China’s manufacturing industry. Journal of Environmental Management, 300, 113687. https://doi.org/10.1016/J.JENVMAN.2021.113687

Lohmer, J., da Silva, E. R., & Lasch, R. (2022). Blockchain Technology in Operations & Supply Chain Management: A Content Analysis. Sustainability (Switzerland), 14(10), 1–88. https://doi.org/10.3390/su14106192

Lund, S.; Manyika, J.; Woetzel, J.; Bsrriball, Ed.; Krishnan, M.; Alicke, K.; Birshan, M.; George, K., Smit, S.; Swan, D.; Hultzler, K. (2020). and Rebalancing in Global Value Chains. In McKinsey Global Institute (Issue August).

Ma, X., Nakab, A., & Vidart, D. (2020). Human Capital Investment and Development: The Role of On-the-job Training.

Masengu, R., Al Habsi, J. S., Ruzive, B., Muchenje, C., & Tsikada, C. (2024). Food Traceability Technology and Compliance Measures in Fast Food Retails: The Mediating Effect of Supply Chain Efficiency on Consumer Trust. Studies in Systems, Decision and Control, 545, 563–576. https://doi.org/10.1007/978-3-031-65203-5_50

Masengu, R., Mohamed, E. D., Benson, R., & Jouhara, A. H. (2024). Effectiveness of food quality and safety management systems in Oman’s food supply chain. https://doi.org/10.21203/RS.3.RS-3867358/V1

McCarthy, R. V., McCarthy, M. M., & Ceccucci, W. (2022). Applying Predictive Analytics. Applying Predictive Analytics. https://doi.org/10.1007/978-3-030-83070-0

McGreevey, J. D., Mallozzi, C. P., Perkins, R. M., Shelov, E., & Schreiber, R. (2020). Reducing Alert Burden in Electronic Health Records: State of the Art Recommendations from Four Health Systems. Applied Clinical Informatics, 11(1), 1–12. https://doi.org/10.1055/s-0039-3402715

McMaster, M., Nettleton, C., Tom, C., Xu, B., Cao, C., & Qiao, P. (2020). Risk Management: Rethinking Fashion Supply Chain Management for Multinational Corporations in Light of the COVID-19 Outbreak. Journal of Risk and Financial Management, 13(8). https://doi.org/10.3390/jrfm13080173

Mohammadi-Nasrabadi, F., Salmani, Y., & Esfarjani, F. (2021). A quasi-experimental study on the effect of health and food safety training intervention on restaurant food handlers during the COVID-19 pandemic. Food Science and Nutrition, 9(7), 3655–3663. https://doi.org/10.1002/fsn3.2326

Montecchi, M., Plangger, K., & West, D. C. (2021). Supply chain transparency: A bibliometric review and research agenda. International Journal of Production Economics, 238, 108152. https://doi.org/10.1016/J.IJPE.2021.108152

Moral-Pajares, E., Martínez-Alcalá, C., Gallego-Valero, L., & Caviedes-Conde, Á. A. (2020a). Transparency index of the supplying countries’ institutions and tree cover loss: Determining factors of EU timber imports? Forests, 11(9), 1–16. https://doi.org/10.3390/F11091009

Moral-Pajares, E., Martínez-Alcalá, C., Gallego-Valero, L., & Caviedes-Conde, Á. A. (2020b). Transparency index of the supplying countries’ institutions and tree cover loss: Determining factors of EU timber imports? Forests, 11(9), 1–16. https://doi.org/10.3390/F11091009

Munir, M., Jajja, M. S. S., Chatha, K. A., & Farooq, S. (2020). Supply chain risk management and operational performance: The enabling role of supply chain integration. International Journal of Production Economics, 227, 107667. https://doi.org/10.1016/J.IJPE.2020.107667

Otitolaiye, V. O., & Abd Aziz, F. S. (2024). Bibliometric analysis of safety management system research (2001–2021). Journal of Safety Research, 88, 111–124. https://doi.org/10.1016/j.jsr.2023.10.014

Overbosch, P., & Blanchard, S. (2023). Principles and Systems for Quality and Food Safety Management. Food Safety Management: A Practical Guide for the Food Industry, Second Edition, 497–512. https://doi.org/10.1016/B978-0-12-820013-1.00018-8

Parast, M. M. (2020). The impact of R&D investment on mitigating supply chain disruptions: Empirical evidence from U.S. firms. International Journal of Production Economics, 227, 107671. https://doi.org/10.1016/J.IJPE.2020.107671

Patidar, A., Sharma, M., & Agrawal, R. (2021). Prioritizing drivers to creating traceability in the food supply chain. Procedia CIRP, 98, 690–695. https://doi.org/10.1016/J.PROCIR.2021.01.176

Purwanto, A., Sulistiyadi, A., Primahendra, R., Kotamena, F., Prameswari, M., & Ong, F. (2020). Does quality, safety, environment and food safety management system influence business performance? Answers from indonesian packaging industries. International Journal of Control and Automation, 13(1), 22–35.

Raspor, P. (2008). Total food chain safety: how good practices can contribute? Trends in Food Science & Technology, 19(8), 405–412. https://doi.org/10.1016/J.TIFS.2007.08.009

Rincon-Ballesteros, L., Lannelongue, G., & González-Benito, J. (2024). Cross-Continental Insights: Comparing Food Safety Management Systems In Europe And Latin America. Food Control, 110552. https://doi.org/10.1016/j.foodcont.2024.110552

Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2–an improved criterion for assessing discriminant validity in structural equation modeling. Industrial Management and Data Systems, 121(12), 2637–2650. https://doi.org/10.1108/IMDS-02-2021-0082

Rosak-Szyrocka, J., & Abbase, A. A. (2020). Quality management and safety of food in HACCP system aspect. Production Engineering Archives, 26(2), 50–53. https://doi.org/10.30657/pea.2020.26.11

Sarstedt, M., Hair, J. F., Nitzl, C., Ringle, C. M., & Howard, M. C. (2020). Beyond a tandem analysis of SEM and PROCESS: Use of PLS-SEM for mediation analyses! International Journal of Market Research, 62(3), 288–299. https://doi.org/10.1177/1470785320915686/ASSET/IMAGES/LARGE/10.1177_1470785320915686-FIG2.JPEG

Schniederjans, D. G., Curado, C., & Khalajhedayati, M. (2020). Supply chain digitisation trends: An integration of knowledge management. International Journal of Production Economics, 220, 107439. https://doi.org/10.1016/J.IJPE.2019.07.012

Schuitemaker, R., & Xu, X. (2020). Product traceability in manufacturing: A technical review. Procedia CIRP, 93, 700–705. https://doi.org/10.1016/J.PROCIR.2020.04.078

Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1). https://doi.org/10.1186/s40537-020-00329-2

Sghir, N., Adadi, A., & Lahmer, M. (2023). Recent advances in Predictive Learning Analytics: A decade systematic review (2012–2022). In Education and Information Technologies (Vol. 28, Issue 7). Springer US. https://doi.org/10.1007/s10639-022-11536-0

Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers & Operations Research, 119, 104926. https://doi.org/10.1016/J.COR.2020.104926

Shekarian, E. (2020). A review of factors affecting closed-loop supply chain models. Journal of Cleaner Production, 253, 119823. https://doi.org/10.1016/J.JCLEPRO.2019.119823

Sheng Liu, L. H., & Zuo-Jun, M. S. (2021). On-Time Last-Mile Delivery : Order Assignment with On-Time Last-Mile Delivery : Order Assignment with. Management Science, 67(7), 4095–4119.

Shmueli, G., Sarstedt, M., Hair, J. F., Cheah, J. H., Ting, H., Vaithilingam, S., & Ringle, C. M. (2019). Predictive model assessment in PLS-SEM: guidelines for using PLSpredict. European Journal of Marketing, 53(11), 2322–2347. https://doi.org/10.1108/EJM-02-2019-0189/FULL/PDF

Tirkolaee, E. B., Sadeghi, S., Mooseloo, F. M., Vandchali, H. R., & Aeini, S. (2021). Application of Machine Learning in Supply Chain Management: A Comprehensive Overview of the Main Areas. Mathematical Problems in Engineering, 2021(Ml). https://doi.org/10.1155/2021/1476043

Wamba, S. F., & Queiroz, M. M. (2020). Blockchain in the operations and supply chain management: Benefits, challenges and future research opportunities. International Journal of Information Management, 52, 102064. https://doi.org/10.1016/J.IJINFOMGT.2019.102064

WHO. (2022). Food safety. World Helath Organisation. https://www.who.int/news-room/fact-sheets/detail/food-safety

Yang, M., Fu, M., & Zhang, Z. (2021). The adoption of digital technologies in supply chains: Drivers, process and impact. Technological Forecasting and Social Change, 169, 120795. https://doi.org/10.1016/J.TECHFORE.2021.120795

Yilmaz, C., Varnali, K., & Kasnakoglu, B. T. (2016). How do firms benefit from customer complaints? Journal of Business Research, 69(2), 944–955. https://doi.org/10.1016/J.JBUSRES.2015.08.038

Zheng, M., Li, Y., Su, Z., Fan, Y. Van, Jiang, P., Varbanov, P. S., & Klemeš, J. J. (2022). Supplier evaluation and management considering greener production in manufacturing industry. Journal of Cleaner Production, 342, 130964. https://doi.org/10.1016/J.JCLEPRO.2022.130964




DOI: https://doi.org/10.24294/jipd10114

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Reason Masengu, Chenjerai Muchenje, Benson Ruzive

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.