Hydrological response to land use/land cover projection in Cisadane watershed, Indonesia

Muhrina Anggun Sari Hasibuan, Widiatmaka Widiatmaka, Suria Darma Tarigan, Wiwin Ambarwulan

Article ID: 10102
Vol 9, Issue 1, 2025

VIEWS - 56 (Abstract)

Abstract


The Cisadane Watershed is in a critical state, which has expanded residential areas upstream of Cisadane. Changes in land use and cover can impact a region’s hydrological characteristics. The Soil and Water Assessment Tool (SWAT) is a hydrological model that can simulate the hydrological characteristics of the watershed affected by land use. This study aims to evaluate the impact of land use change on the hydrological characteristics of the Cisadane watershed using SWAT under different land use scenarios. The models were calibrated and validated, and the results showed satisfactory agreement between observed and simulated streamflow. The main river channel is based on the results of the watershed delineation process, with the watershed boundary consisting of 85 sub-watersheds. The hydrological characteristics showed that the maximum flow rate (Q max) was 12.30 m3/s, and the minimum flow rate (Q min) was 5.50 m3/s. The study area’s distribution of future land use scenarios includes business as usual (BAU), protecting paddy fields (PPF), and protecting forest areas (PFA). The BAU scenario had the worst effect on hydrological responses due to the decreasing forests and paddy fields. The PFA scenario yielded the most favourable hydrological response, achieving a notable reduction from the baseline BAU in surface flow, lateral flow, and groundwater by 2%, 7%, and 2%, respectively. This was attributed to enhanced water infiltration, alongside increases in water yield and evapotranspiration of 3% and 15%, respectively. l Therefore, it is vital to maintain green vegetation and conserve land to support sustainable water availability.


Keywords


hydrological characteristics; LULC; sustainable development; SWAT model

Full Text:

PDF


References


[BPDASPS] Direktur Jenderal Bina Pengelolaan Daerah Aliran Sungai dan Perhutanan Sosial. Peraturan Direktur Jenderal Bina Pengelolaan Daerah Aliran Sungai dan Perhutanan Sosial tentang Pedoman Identifikasi Karakteristik Daerah Aliran Sungai, Nomor: P. 3/V-SET/2013. Jakarta: 2013.

[BPS] Badan Pusat Statistik . Average Population Growth by Province, 1971–2024. Https://WwwBpsGoId/Id/Statistics-Table/1/MTI2OCMx/Average-Population-Growth-by-Province--1971---2024Html 2024.

[KLHK] Kementerian Lingkungan Hidup dan Kehutanan. Rencana Strategis Direktorat Jenderal Pengendalian Daerah Aliran Sungai dan Hutan Lindung 2015 – 2019. Jakarta: 2015.

Abraham S, Huynh C, Vu H. Classification of soils into hydrologic groups using machine learning. Data (Base) 2019;5:2. https://doi.org/10.3390/data5010002.

Ambarwulan W, Yulianto F, Widiatmaka W, Rahadiati A, Tarigan SD, Firmansyah I, et al. Modeling land use/land cover projection using different scenarios in the Cisadane Watershed, Indonesia: Implication on deforestation and food security. The Egyptian Journal of Remote Sensing and Space Science 2023;26:273–83. https://doi.org/10.1016/j.ejrs.2023.04.002.

Arnold JG, Srinivasan R, Muttiah RS, Williams JR. Large area hydrologic modeling and assessment part1: Model development. J Am Water Resour Assoc 1998;34:73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x.

Bagstad KJ, Semmens DJ, Waage S, Winthrop R. A comparative assessment of decision-support tools for ecosystem services quantification and valuation. Ecosyst Serv 2013;5:27–39. https://doi.org/10.1016/j.ecoser.2013.07.004.

Balist J, Malekmohammadi B, Jafari HR, Nohegar A, Geneetti D. Detecting land use and climate impacts on water yield ecosystem service in arid and semi-arid areas. A study in Sirvan River Basin-Iran. Appl Water Sci 2022;12:4. https://doi.org/10.1007/s13201-021-01545-8.

Briones R, Ela V, Bantayan N. Hydrologic Impact Evaluation of Land Use and Land Cover Change in Palico Watershed, Batangas, Philippines Using the SWAT Model. Journal of Environmental Science and Management 2016;19:96–107. https://doi.org/10.47125/jesam/2016_1/10.

Cao Z, Wang S, Luo P, Xie D, Zhu W. Watershed Ecohydrological Processes in a Changing Environment: Opportunities and Challenges. Water (Base) 2022;14:1502. https://doi.org/10.3390/w14091502.

Carlotto T, Klaus J, Chaffe PLB. An open-source GIS preprocessing tool for the ParFlow hydrological model (PFGIS-Tool v1.0.0). Environmental Modeling & Software 2023;169:105824. https://doi.org/10.1016/j.envsoft.2023.105824.

Castro C V., Maidment DR. GIS preprocessing for rapid initialization of HEC-HMS hydrological basin models using web-based data services. Environmental Modeling & Software 2020;130:104732. https://doi.org/10.1016/j.envsoft.2020.104732.

de Groot RS, Wilson MA, Boumans RMJ. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecological Economics 2002;41:393–408. https://doi.org/10.1016/S0921-8009(02)00089-7.

Elfert S, Bormann H. Simulated impact of past and possible future land use changes on the hydrological response of the Northern German lowland ‘Hunte’ catchment. J Hydrol (Amst) 2010;383:245–55. https://doi.org/10.1016/j.jhydrol.2009.12.040.

Endang T, Tessie K. Evaluasi Perubahan Penggunaan Lahan Kecamatan di Daerah Aliran Sungai Cisadane Kabupaten Bogor. Jurnal Wilayah Dan Lingkungan 2014;2:55. https://doi.org/10.14710/jwl.2.1.55-72.

Francesconi W, Srinivasan R, Pérez-Miñana E, Willcock SP, Quintero M. Using the Soil and Water Assessment Tool (SWAT) to model ecosystem services: A systematic review. J Hydrol (Amst) 2016;535:625–36. https://doi.org/10.1016/j.jhydrol.2016.01.034.

Garg V, Nikam BR, Thakur PK, Aggarwal SP. Assessment of the effect of slope on runoff potential of a watershed using NRCS-CN method. International Journal of Hydrology Science and Technology 2013;3:141. https://doi.org/10.1504/IJHST.2013.057626.

Ghalib W, Majeed M, Al-Taai O. Influence of Precipitation and Evaporation on Water Balance in Iraq 2022.

Githui F, Mutua F, Bauwens W. Estimating the impacts of land-cover change on runoff using the soil and water assessment tool (SWAT): case study of Nzoia catchment, Kenya / Estimation des impacts du changement d’occupation du sol sur l’écoulement à l’aide de SWAT: étude du cas du bassin de Nzoia, Kenya. Hydrological Sciences Journal 2009;54:899–908. https://doi.org/10.1623/hysj.54.5.899.

Guevara-Escobar A, Gonzalez-Sosa E, Ramos-Salinas M, Hernandez-Degado GD. Experimental analysis of drainage and water storage of litter layers. Hydrol Earth Syst Sci 2007;11:1703–16. https://doi.org/10.5194/hess-11-1703-2007.

Gumelar AR, Alamsyah AT, Gupta IBH, Syahdanul D, Tampi DM. Sustainable Watersheds: Assessing the Source and Load of Cisadane River Pollution. International Journal of Environmental Science and Development 2017;8:484–8. https://doi.org/10.18178/ijesd.2017.8.7.1001.

Huang X-D, Shi Z-H, Fang N-F, Li X. Influences of land use change on baseflow in mountainous watersheds. Forests 2016;7:16. https://doi.org/10.3390/f7010016.

Junaidi E. Peranan penerapan agroforestry terhadap hasil air Daerah Aliran Sungai (DAS) Cisadane. Jurnal Penelitian Agroforestry 2013;1:41–53.

Kaliraj S, Chandrasekar N, Ramachandran KK, Lalitha M. GIS based NRCS-CN modeling of rainfall-runoff in river Thamirabarani sub-basin, Southern India. Journal of Hydro-Environment Research 2023;49:10–27. https://doi.org/10.1016/j.jher.2023.07.001.

Kayitesi NM, Guzha AC, Mariethoz G. Impacts of land use land cover change and climate change on river hydro-morphology- a review of research studies in tropical regions. J Hydrol (Amst) 2022;615:128702. https://doi.org/10.1016/j.jhydrol.2022.128702.

Khresat S. Formation and properties of Inceptisols (Cambisols) of major agricultural rainfed areas in Jordan. Arch Agron Soil Sci 2005;51:15–23. https://doi.org/10.1080/03650340400026545.

Kim HW, Li M-H, Kim J-H, Jaber F. Examining the Impact of Suburbanization on Surface Runoff using the SWAT. Int J Environ Res 2016;10:379–90. https://doi.org/10.22059/ijer.2016.58757.

Larbi I, Obuobie E, Verhoef A, Julich S, Feger K-H, Bossa AY, et al. Water balance components estimation under scenarios of land cover change in the Vea catchment, West Africa. Hydrological Sciences Journal 2020;65:2196–209. https://doi.org/10.1080/02626667.2020.1802467.

Li Z, Deng X, Wu F, Hasan S. Scenario analysis for water resources in response to land use change in the middle and upper reaches of the Heihe River Basin. Sustainability 2015;7:3086–108. https://doi.org/10.3390/su7033086.

Luo Y, Yang Y, Yang D, Zhang S. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. J Hydrol (Amst) 2020;590:125389. https://doi.org/10.1016/j.jhydrol.2020.125389.

Marhaento H, Booij MJ, Hoekstra AY. Hydrological response to future land-use change and climate change in a tropical catchment. Hydrological Sciences Journal 2018;63:1368–85. https://doi.org/10.1080/02626667.2018.1511054.

Marhaento H, Booij MJ, Rientjes THM, Hoekstra AY. Attribution of changes in the water balance of a tropical catchment to land use change using the SWAT model. Hydrol Process 2017;31:2029–40. https://doi.org/10.1002/hyp.11167.

Maru H, Haileslassie A, Zeeke T, Teferi E. Analysis of the impacts of land use land cover change on streamflow and surface water availability in Awash Basin, Ethiopia. Geomatics, Natural Hazards and Risk 2023;14:1–25. https://doi.org/10.1080/19475705.2022.2163193.

Mekonnen YA, Manderso TM. Land use/land cover change impact on streamflow using Arc-SWAT model, in case of Fetam watershed, Abbay Basin, Ethiopia. Appl Water Sci 2023;13:111. https://doi.org/10.1007/s13201-023-01914-5.

Memarian H, Balasundram SK, Abbaspour KC, Talib JB, Boon Sung CT, Sood AM. SWAT-based hydrological modeling of tropical land-use scenarios. Hydrological Sciences Journal 2014;59:1808–29. https://doi.org/10.1080/02626667.2014.892598.

Moriasi D, Anaba LA, Banadda N, Kiggundu N, Wanyama J, Enge B. Hydrologic and Water Quality Models: Key Calibration and Validation Topics. Trans ASABE 2015;58:1609–18. https://doi.org/10.13031/trans.58.11075.

Moriasi D, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harme, T. L. Veith. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans ASABE 2007;50:885–900. https://doi.org/10.13031/2013.23153.

Neitsch S, Arnold J, Kiniry J, Williams J. Soil and Water Assessment Tool Theoretical Documentation Version 2009. Texas (US): Texas Water Resources Institute; 2011.

Neitsch SL, Armold JG, Kiniry JR, Srinivasan R, William JR. Soil and Water Assessment Tools Input/Output File Documentation Version 2005. Texas: Agricultural Research Service (US); 2004.

Nilda N, Adnyana IWS, Merit IN. Analisis Perubahan Penggunaan Lahan dan Dampaknya terhadap Hasil Air di DAS Cisadane Hulu. ECOTROPHIC : Jurnal Ilmu Lingkungan (Journal of Environmental Science) 2015;9:35. https://doi.org/10.24843/EJES.2015.v09.i01.p05.

Pontes PRM, Fan FM, Fleischmann AS, de Paiva RCD, Buarque DC, Siqueira VA, et al. MGB-IPH model for hydrological and hydraulic simulation of large floodplain river systems coupled with open source GIS. Environmental Modeling & Software 2017;94:1–20. https://doi.org/10.1016/j.envsoft.2017.03.029.

Puno RCC, Puno GR, Talisay BAM. Hydrologic responses of watershed assessment to land cover and climate change using soil and water assessment tool model. Global Journal of Environmental Science and Management 2019;5:71–82. https://doi.org/10.22034/gjesm.2019.01.06.

Putra PB, Agus C, Adi RN, Susanti PD, Indrajaya Y. Land Use Change in Tropical Watersheds: Will It Support Natural Resources Sustainability? Sustainability in Natural Resources Management and Land Planning, Springer; 2021, p. 63–75.

Rodríguez-Morales JA, Barrios-Calderón R de J, Reyes-Reyes J, Torre D de JP la. Hydrological Processes in a Small Research Watershed under Forest Coverage in the Coast of Chiapas, Mexico. Journal of Geoscience and Environment Protection 2023;11:104–14. https://doi.org/10.4236/gep.2023.113007.

Sáez JP, Martínez-España R, Casalí J, Pérez-Sánchez J, Senent-Aparicio J. A comparison of performance of SWAT and machine learning models for predicting sediment load in a forested Basin, Northern Spain. Catena (Amst) 2022;212:105953. https://doi.org/10.1016/j.catena.2021.105953.

Tankpa V, Wang L, Awotwi A, Singh L, Thapa S, Atanga RA, et al. Modeling the effects of historical and future land use/land cover change dynamics on the hydrological response of Ashi watershed, northeastern China. Environ Dev Sustain 2021;23:7883–912. https://doi.org/10.1007/s10668-020-00952-2.

Tarigan S, Wiegand K, Slamet B. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia. Hydrology and Earth System Sciences 2018; 22(1): 581–594. https://doi.org/10.5194/hess-22-581-2018

Tewabe D, Fentahun T. Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environ Sci 2020;6. https://doi.org/10.1080/23311843.2020.1778998.

Utami W, Wahjunie E, Tarigan S. Karakteristik Hidrologi dan Pengelolaannya dengan Model Hidrologi Soil and Water Assessment Tool Sub DAS Cisadane Hulu. Jurnal Ilmu Pertanian Indonesia 2020;25:342–8. https://doi.org/10.18343/ipi.25.3.342.

Varga M, Balogh S, Csukas B. GIS based generation of dynamic hydrological and land patch simulation models for rural watershed areas. Information Processing in Agriculture 2016;3:1–16. https://doi.org/10.1016/j.inpa.2015.11.001.

Ware HH, Mengistu TD, Yifru BA, Chang SW, Chung I-M. Assessment of Spatiotemporal Groundwater Recharge Distribution Using SWAT-MODFLOW Model and Transient Water Table Fluctuation Method. Water (Base) 2023;15:2112. https://doi.org/10.3390/w15112112.

Yang Q, Almendinger JE, Zhang X, Huang M, Chen X, Leng G, et al. Enhancing SWAT simulation of forest ecosystems for water resource assessment: A case study in the St. Croix River basin. Ecol Eng 2018;120:422–31. https://doi.org/10.1016/j.ecoleng.2018.06.020.

Yang Q, Tian H, Li X, Tao B, Ren W, Chen G, et al. Spatiotemporal patterns of evapotranspiration along the North American east coast as influenced by multiple environmental changes. Ecohydrology 2015;8:714–25. https://doi.org/10.1002/eco.1538.

Yifru BA, Chung I-M, Kim M-G, Chang SW. Assessing the Effect of Land/Use Land Cover and Climate Change on Water Yield and Groundwater Recharge in East African Rift Valley using Integrated Model. J Hydrol Reg Stud 2021;37:100926. https://doi.org/10.1016/j.ejrh.2021.100926.

Yustika RD, Tarigan SD, Sudadi U. Simulasi manajemen lahan di DAS Ciliwung Hulu menggunakan model SWAT. Informatika Pertanian 2016;21:71. https://doi.org/10.21082/ip.v21n2.2012.p71-79.

Zhang L, Nan Z, Yu W, Ge Y. Hydrological Responses to Land-Use Change Scenarios under Constant and Changed Climatic Conditions. Environ Manage 2016;57:412–31. https://doi.org/10.1007/s00267-015-0620-z.




DOI: https://doi.org/10.24294/jipd10102

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Muhrina Anggun Sari Hasibuan, Widiatmaka, Suria Darma Tarigan, Wiwin Ambarwulan

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.