Vol 8, No 2 (2025)

Table of Contents

Open Access
Article
Article ID: 10741
PDF
by S. A. Adeleye, I. O. Oluwaleye, T. S. Adebayo
Therm. Sci. Eng. 2025, 8(2);   
Abstract

This research investigates the effects of drying on some selected vegetables, which are Telfaria occidentalis, Amaranthu scruentus, Talinum triangulare, and Crussocephalum biafrae. These vegetables were collected fresh, sliced into smaller sizes of 0.5 cm, and dried in a convective dryer at varying temperatures of 60.0 ℃, 70.0 ℃ and 80.0 ℃ respectively, for a regulated fan speed of 1.50 ms−1, 3.00 ms−1 and 6.00 ms−1, and for a drying period of 6 h. It was discovered that the drying rate for fresh samples was 4.560 gmin−1 for Talinum triangulare, 4.390 gmin−1 for Amaranthu scruentus, 4.580 gmin−1 for Talinum triangulare, and 4.640 gmin−1 for Crussocephalum biafrae at different controlled fan speeds and regulated temperatures when the mass of the vegetable samples at each drying time was compared to the mass of the final samples dried for 6 h. The samples are considered completely dried when the drying time reaches a certain point, as indicated by the drying rate and moisture contents tending to zero. According to drying kinetics, the rate of moisture loss was extremely high during the first two hours of drying and then steadily decreased during the remaining drying duration. The rate at which moisture was removed from the vegetable samples after the drying process at varying regulated temperatures was noted to be in this trend: 80.0 ℃ > 70.0 ℃ > 60.0 ℃ and 6.0 ms−1 > 3.0 ms−1 > 1.5 ms−1 for regulated fan speed. It can be stated here that the moisture contents have significant effects on the drying rate of the samples of vegetables investigated because the drying rate decreases as the regulated temperatures increase and the moisture contents decrease. The present investigation is useful in the agricultural engineering and food engineering industries.

show more
Open Access
Article
Article ID: 11550
PDF
by Ahmet Elbir, Mehmet Erhan Şahin
Therm. Sci. Eng. 2025, 8(2);   
Abstract

This study comprehensively evaluates the system performance by considering the thermodynamic and exergy analysis of hydrogen production by the water electrolysis method. Energy inputs, hydrogen and oxygen production capacities, exergy balance, and losses of the electrolyzer system were examined in detail. In the study, most of the energy losses are due to heat losses and electrochemical conversion processes. It has also been observed that increased electrical input increases the production of hydrogen and oxygen, but after a certain point, the rate of efficiency increase slows down. According to the exergy analysis, it was determined that the largest energy input of the system was electricity, hydrogen stood out as the main product, and oxygen and exergy losses were important factors affecting the system performance. The results, in line with other studies in the literature, show that the integration of advanced materials, low-resistance electrodes, heat recovery systems, and renewable energy is critical to increasing the efficiency of electrolyzer systems and minimizing energy losses. The modeling results reveal that machine learning programs have significant potential to achieve high accuracy in electrolysis performance estimation and process view. This study aims to contribute to the production of growth generation technologies and will shed light on global and technological regional decision-making for sustainable energy policies as it expands.

show more
Open Access
Article
Article ID: 11273
PDF
by Muneeb ur Rehman, Umair Ahmad, Muhammad Tuoqeer Anwar, Muhammad Hamza Dawood, Hamza Aslam, Muhammad Salman Mustafa, Syed Khawar Hussain Shah, Mohamed Kchaou, Talha Younas, Tahir Rasheed
Therm. Sci. Eng. 2025, 8(2);   
Abstract

This study aims to investigate the enhancement in electrical efficiency of a polycrystalline photovoltaic (PV) module. The performance of a PV module primarily depends upon environmental factors like temperature, irradiance, etc. Mainly, the PV module performance depends upon the panel temperature. The performance of the PV module has an inverse relationship with temperature. The open circuit voltage of a module decreases with the increase in temperature, which consequently leads to the reduction in maximum power, efficiency, and fill factor. This study investigates the increase in the efficiency of the PV module by lowering the panel temperature with the help of water channel cooling and water-channel accompanied with forced convection. The two arrangements, namely, multi-inlet outlet and serpentine, are used to decrease the temperature of the polycrystalline PV module. Copper tubes in the form of the above arrangements are employed at the back surface of the panel. The results demonstrate that the combined technique is more efficient than the simple water-channel cooling technique owing to multi-heat dissipation and effective heat transfer, and it is concluded that the multi-inlet outlet cooling technique is more efficient than the serpentine cooling technique, which is attributed to uniform cooling over the surface and lesser pressure losses.

show more
Open Access
Review
Article ID: 11163
PDF
by Muhammad Sohail Jahanzeb, Humaira Aslam, Syeda Hira Fatima, Asifa Naheed, Nazia Nusrat, Narjis Fatima, Amena Khaliq, Moazzam Ali, Mian Muhammad Waqas, Misbah Ullah Khan, Shehla Honey
Therm. Sci. Eng. 2025, 8(2);   
Abstract

Metal iodide materials as novel components of thermal biological and medical systems at the interface between heat transfer techniques and therapeutic systems. Due to their outstanding heat transfer coefficients, biocompatibility, and thermally activated sensitivity, metal iodides like silver iodide (AgI), copper iodide (CuI), and cesium iodide (CsI) are considered to be useful in improving the performance of medical instruments, thermal treatment processes, and diagnostics. They are examined for their prospective applications in controlling thermal activity, local heating therapy, and smart temperature-sensitive drug carrier systems. In particular, their application in hyperthermia therapy for cancer treatment, infrared thermal imaging for diagnosis, and nano-based drug carriers points to a place for them in precision medicine. But issues of stability of materials used, biocompatibility, and control of heat—an essential factor that would give the tools the maximum clinical value—remain a challenge. The present mini-review outlines the emerging area of metal iodides and their applications in medical technologies, with a special focus on the pivotal role of these materials in enhancing non-invasive, efficient, and personalized medicine. Over time, metal iodide-based systems scouted a new era of thermal therapies and diagnostic instrumentation along with biomedical science as a whole.

show more