https://library.wmo.int/idurl/4/68835 (accessed on 19 October 2024).

"> https://co2coalition.org/wp-content/uploads/2022/03/Infrared-Forcing-by-Greenhouse-Gases-2019-Revised-3-7-2022.pdf (accessed on 10 October 2024).

"> https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 10 October 2024).

">

On the role of trace gases in the Earth’s radiation balance—Thermodynamic treatment

Helmut Ullmann, Martin Bülow

Article ID: 10356
Vol 8, Issue 2, 2025

VIEWS - 52 (Abstract)

Abstract


The role of trace gases in the storage of heat in the atmosphere of the Earth and in the exchange of energy between the atmosphere and outer space is discussed. The molar heat capacities of the trace gases water vapor, carbon dioxide and methane are only slightly higher than those of nitrogen and oxygen. The contribution of trace gases carbon dioxide and methane to heat storage is negligible. Water vapor, with its higher concentration and conversion energies, contributes significantly to the heat storage in the atmosphere. Most of the heat in the Earth’s atmosphere is stored in nitrogen and oxygen, the main components of the atmosphere. The trace gases act as converters of infrared radiation into heat and vice versa. They are receivers and transmitters in the exchange of energy with outer space. The radiation towards space is favored compared to the reflection towards the surface of the Earth with increasing altitude by decreasing the density of the atmosphere and condensation of water vapor. Predictions of the development of the climate over a century by extrapolation are critically assessed.


Keywords


trace gases; carbon dioxide; water vapour; molar heat capacity; radiation balance; energy of translation; energy of vibration; heat-radiation transmitters

Full Text:

PDF


References


1.         Leitgeb NS, Wellen F. Stuttgart, New York: Thieme; München. Deutscher Taschenbuchverlag; 1990.

2.         Meerkötter R, Vázquez-Navarro M. 2012. Earth’s Radiation Budget: The Driver for Weather and Climate. In: Schumann U (editor) Atmospheric Physics. Research Topics in Aerospace. Springer, Berlin, Heidelberg; 2012.

3.         Parmentola J. The Great Mystery of Economic Growth—How taxpayers benefit from the actual cause of economic growth. Available online: https://johnparmentola.com/the-comming-of-a-climate-catastrophe/? (accessed on 10 October 2024).

4.         Rae JWB, Zhang YG, Liu X, et al. Atmospheric CO2 over the Past 66 Million Years from Marine Archives. Annual Review of Earth and Planetary Sciences. 2021; 49(1): 609-641. doi: 10.1146/annurev-earth-082420-063026

5.         The World Meteorological Organization. Available online: https://library.wmo.int/idurl/4/68835 (accessed on 19 October 2024).

6.         IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the IPCC. Geneva; 2023. doi:10.59327/IPCC/AR6-9789291691647.00.

7.         Vahrenholt F, Lüning S, Unerwünschte W. Was Sie über den Klimawandel wissen sollten. München, LMV; 2020.

8.         Seifritz W, Der T. Technische Maßnahmen zur CO2-Entsorgung. München, Wien: Carl Hanser; 1991.

9.         Soon W, Connolly R, Connolly M, et al. The Detection and Attribution of Northern Hemisphere Land Surface Warming (1850–2018) in Terms of Human and Natural Factors: Challenges of Inadequate Data. Climate. 2023; 11(9): 179. doi: 10.3390/cli11090179

10.      Gerlich G, Tscheuschner RD. Falsification of the atmosphericco2greenhouse effects within the frame of physics. International Journal of Modern Physics B. 2009; 23(03): 275-364. doi: 10.1142/s021797920904984x

11.      Rahmstorf S, Klimawandel-einige F. Aus Politik und Zeitgeschichte. ApuZ; 2007.

12.      van Wijngaarden WA, Happer W. Infrared Forcing by Greenhouse Gases. Available online: https://co2coalition.org/wp-content/uploads/2022/03/Infrared-Forcing-by-Greenhouse-Gases-2019-Revised-3-7-2022.pdf (accessed on 10 October 2024).

13.      United Nations FCCC. Framework Convention on Climate Change. Available online: https://unfccc.int/resource/docs/convkp/conveng.pdf (accessed on 10 October 2024).

14.      Intergovernmental Panel on Climate Change (IPCC). IPCC AR6 WG1. Intergovernmental Panel on Climate Change (IPCC); 2019.

15.      Statista. Energie und Umwelt. Anteil der wichtigsten Energiequellen am weltweiten Primärenergieverbrauch von 2021 bis 2023. Available online: https://de.statista.com/statistik/daten/studie/258294/umfrage/anteil-der-wichtigsten-energiequellen-am-weltweiten-primaerenergieverbrauch/ (accessed on 10 October 2024).

16.      Pollack HN, Hurter SJ, Johnson JR. Heat flow from the Earth’s interior: Analysis of the global data set. Reviews of Geophysics. 1993; 31(3): 267-280. doi: 10.1029/93rg01249

17.      Tabellensammlung. Tabellensammlung Chemie./spezifische Wärmekapazitäten/Temperaturabhängigkeit von Cp bei Gasen/de. Wikibooks.org; 2023.

18.      Ullmann H, Bülow M. Zur Rolle des Kohlenstoffdioxids für das Klima. Leibniz Online; 2023.

19.      Ullmann H, Bülow M. The role of greenhouse gases in radiative equilibrium—Thermodynamic evaluation. Zeitschrift für Physikalische Chemie. 2024; 238(12): 2239-2247. doi: 10.1515/zpch-2023-0384

20.      Watts A. Methane: The Irrelevant Greenhouse Gas. Watts Up With That; 2014.

21.      Czeslik C, Seemann H, Winter R. Basiswissen Physikalische Chemie. Vieweg+Teubner; 2010. doi: 10.1007/978-3-8348-9359-8

22.      van Wijngarden WA, Happer W. Atmosphere and Greenhouse Gas Primer. Atmospheric and Oceanic Physics; 2023.

23.      Jablonski A. Efficiency of Anti-Stokes Fluorescence in Dyes. Nature. 1933; 131(3319): 839-840. doi: 10.1038/131839b0

24.      Wöhrle D, Tausch MW, Stohrer WD. Photochemie—Konzepte, Methoden, Experimente. Wiley-VCH Verlag, Weinheim; 1998.




DOI: https://doi.org/10.24294/tse10356

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Author(s)

License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.