Global warming, a global energy resource
Vol 7, Issue 2, 2024
VIEWS - 416 (Abstract) 26 (PDF)
Abstract
Global warming is a thermodynamic problem. When excess heat is added to the climate system, the land warms more quickly than the oceans due to the land’s reduced heat capacity. The oceans have a greater heat capacity because of their higher specific heat and the heat mixing in the upper layer of the ocean. Thermodynamic Geoengineering (TG) is a global cooling method that, when deployed at scale, would generate 1.6 times the world’s current supply of primary energy and remove carbon dioxide (CO2) from the atmosphere. The cooling would mirror the ostensible 2008–2013 global warming hiatus. At scale, 31,000 1-gigawatt (GW) ocean thermal energy conversion (OTEC) plants are estimated to be able to: a) displace about 0.8 watts per square meter (W/m2) of average global surface heat from the surface of the ocean to deep water that could be recycled in 226-year cycles, b) produce 31 terawatts (TW) (relative to 2019 global use of 19.2 TW); c) absorb about 4.3 Gt CO2 per year from the atmosphere by cooling the surface. The estimated cost of these plants is $2.1 trillion per year, or 30 years to ramp up to 31,000 plants, which are replaced as needed thereafter. For example, the cost of world oil consumption in 2019 was $2.3 trillion for 11.6 TW. The cost of the energy generated is estimated at $0.008/KWh.
Keywords
Full Text:
PDFReferences
1. Thapar S. Energy and Climate Change. In: Renewable Energy: Policies, Project Management and Economics. Springer; 2024. doi: 10.1007/978-981-99-9384-0_1
2. Resplandy L, Keeling RF, Eddebbar Y, et al. Quantification of ocean heat uptake from changes in atmospheric O2 and CO2 composition. Scientific Reports. 2019; 9(1). doi: 10.1038/s41598-019-56490-z
3. Yang H, Zhao Y, Liu Z, et al. Heat transport compensation in atmosphere and ocean over the past 22,000 years. Scientific Reports. 2015; 5(1). doi: 10.1038/srep16661
4. Lindsey R, Dahlman L. Climate change: Ocean heat content. Available online: https://www.climate.gov/news-features/understanding-climate/climate-change-ocean-heat-content (accessed on 4 March 2024).
5. Li G, Cheng L, Zhu J, et al. Increasing ocean stratification over the past half-century. Nature Climate Change. 2020; 10(12): 1116-1123. doi: 10.1038/s41558-020-00918-2
6. Zanna L, Khatiwala S, Gregory JM, et al. Global reconstruction of historical ocean heat storage and transport. Proceedings of the National Academy of Sciences. 2019; 116(4): 1126-1131. doi: 10.1073/pnas.1808838115
7. Manighetti B. Ocean circulation: the planet’s great heat engine. Available online: https://niwa.co.nz/publications/water-and-atmosphere/vol9-no4-december-2001/ocean-circulation-the-planets-great-heat-engine (accessed on 28 February 2024).
8. Rogers DP. Air-sea interaction: Connecting the ocean and atmosphere. Reviews of Geophysics. 1995; 33(S2): 1377-1383. doi: 10.1029/95rg00255
9. Lock S. How big is Earth? Available online: https://www.space.com/17638-how-big-is-earth.html (accessed on 2 March 2024).
10. Cheng L, Abraham J, Trenberth KE, et al. New record ocean temperatures and related climate indicators in 2023. Advances in Atmospheric Sciences. 2024; 2024: 1-15. doi: 10.1007/S00376-024-3378-5/METRICS
11. Etheridge DM, Steele LP, Langenfelds RL, et al. Global monitoring laboratory—Carbon cycle greenhouse gases. Available online: https://gml.noaa.gov/ccgg/trends/data.html (accessed on 2 March 2024).
12. Bush E. Oceans are record hot, puzzling and concerning scientists. Available online: https://www.nbcnews.com/science/environment/oceans-record-hot-rcna143179 (accessed on 15 March 2024).
13. Pidwirny M. Global heat balance: Introduction to heat fluxes. In: Fundamentals of Physical Geography, 2nd ed. Rowman & Littlefield; 2006.
14. Angliss B. Climate science for everyone: How much heat can the air and ocean store? Available online: https://scholarsandrogues.com/2013/05/09/csfe-heat-capacity-air-ocean/ (accessed on 3 March 2024).
15. Greenaway SF, Sullivan KD, Umfress SH, et al. Revised depth of the Challenger Deep from submersible transects; including a general method for precise, pressure-derived depths in the ocean. Deep Sea Research Part I: Oceanographic Research Papers. 2021; 178: 103644. doi: 10.1016/J.DSR.2021.103644
16. von Schuckmann K, Minière A, Gues F, et al. Heat stored in the Earth system 1960-2020: where does the energy go? Earth System Science Data. 2023; 15(4): 1675-1709. doi: 10.5194/essd-15-1675-2023
17. UCAR. Transfer and storage of heat in the oceans. Available online: https://scied.ucar.edu/learning-zone/earth-system/climate-system/transfer-and-storage-heat-oceans (accessed on 3 March 2024).
18. Hassan Q, Viktor P, J. Al-Musawi T, et al. The renewable energy role in the global energy transformations. Renewable Energy Focus. 2024; 48: 100545. doi: 10.1016/j.ref.2024.100545
19. Rau GH, Baird JR. Negative-CO2-emissions ocean thermal energy conversion. Renewable and Sustainable Energy Reviews. 2018; 95: 265-272. doi: 10.1016/j.rser.2018.07.027
20. Perez M, Perez R. Update 2022 - A fundamental look at supply side energy reserves for the planet. Solar Energy Advances. 2021; 2: 100014. doi: 10.1016/j.seja.2022.100014
21. Trenberth KE, Caron JM. Estimates of meridional atmosphere and ocean heat transports. Journal of Climate. 2001; 3433-3443. doi: 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2
22. Oh JH, Kug JS, An SI, et al. Emergent climate change patterns originating from deep ocean warming in climate mitigation scenarios. Nature Climate Change. 2024; 14(3): 260-266. doi: 10.1038/s41558-024-01928-0
23. Baird JR. CA2958456 method and apparatus for load balancing trapped solar energy. Available online: https://patentscope.wipo.int/search/en/detail.jsf?docId=CA225415072 (accessed on 23 August 2021).
24. Chan CW, Siqueiros E, Ling-Chin J, et al. Heat utilisation technologies: A critical review of heat pipes. Renewable and Sustainable Energy Reviews. 2015; 50: 615-627. doi: 10.1016/j.rser.2015.05.028
25. Liang X, Spall M, Wunsch C. Global ocean vertical velocity from a dynamically consistent ocean state estimate. Journal of Geophysical Research: Oceans. 2017; 122(10): 8208-8224. doi: 10.1002/2017jc012985
26. Warming ocean—Argo. Woods hole oceanigraphic institution. Available online: https://www2.whoi.edu/site/argo/impacts/warming-ocean/ (accessed on 10 March 2024).
27. Levitus S, Antonov JI, Boyer TP, et al. World ocean heat content and thermosteric sea level change (0-2000 m), 1955-2010. Geophysical Research Letters. 2012; 39(10). doi: 10.1029/2012gl051106
28. Vecellio DJ, Kong Q, Kenney WL, et al. Greatly enhanced risk to humans as a consequence of empirically determined lower moist heat stress tolerance. Proceedings of the National Academy of Sciences. 2023; 120(42). doi: 10.1073/pnas.2305427120
29. Wang X, Lu Y, Chen C, et al. Total-factor energy efficiency of ten major global energy-consuming countries. Journal of Environmental Sciences. 2024; 137: 41-52. doi: 10.1016/j.jes.2023.02.031
30. Nihous GC. A preliminary assessment of ocean thermal energy conversion resources. Journal of Energy Resources Technology. 2006; 129(1): 10-17. doi: 10.1115/1.2424965
31. Prueitt ML. US20070289303A1—Heat transfer for ocean thermal energy conversion—Google Patents. Available online: https://patents.google.com/patent/US20070289303A1/en (accessed on 2 July 2022).
32. Manikowski AF. Deep water condenser OTEC using carbon dioxide working fluid. In: Proceedings of “Challenges of Our Changing Global Environment”; 9-12 October 1995; San Diego, California, USA; 1995. pp. 1092-1099. doi: 10.1109/oceans.1995.528578
33. Fallis A. Waste heat recovery: Technology and opportunities in U.S. industry. Journal of Chemical Information and Modeling. 2013; 53(9): 1689-1699.
34. Zevenhoven R, Beyene A. The relative contribution of waste heat from power plants to global warming. Energy. 2011; 36(6): 3754-3762. doi: 10.1016/j.energy.2010.10.010
35. Jowit J, Espinoza J. Heatwave shuts down nuclear power plants. Available online: https://www.theguardian.com/environment/2006/jul/30/energy.weather (accessed 19 August 2021).
36. Karagiannopoulos L. In hot water: How summer heat has hit Nordic nuclear plants. Available online: https://jp.reuters.com/article/us-nordics-nuclearpower-explainer-idUSKBN1KM4ZR (accessed on 2 July 2022).
37. Haider Q. Nuclear Fusion: One Noble Goal and a Variety of Scientific and Technological Challenges. BoD-Books on Demand; 2019. doi: 10.5772/intechopen.82335
38. Norouzi N, Joda F. Exergy and stabilization design of a fusion power plant and its waste heat recovery to produce hydrogen. Available online: https://www.researchgate.net/publication/357657220_Exergy_and_stabilization_design_of_a_fusion_power_plant_and_its_waste_heat_recovery_to_produce_hydrogen (accessed on 7 March 2024).
39. Murphy TWJ. Energy and Human Ambitions on a Finite Planet. eScholarship; 2021. pp. 7-17. doi: 10.21221/S2978-0-578-86717-5
40. Arli F, Dumrul H, Taskesen E. Hydrogen Production from Solar Water Splitting Using Photocatalytic and Photoelectrochemical Technologies. BIDGE Publ.; 2023. pp. 107-140.
41. Michaelis D. Energy island. In: Proceedings of Oceans 2003: Celebrating the Past... Teaming Toward the Future. 22-26 September 2003; San Diego, CA, USA. pp. 2294-2302. doi: 10.1109/OCEANS.2003.178267
42. EIA. Ocean thermal energy conversion—U.S. Energy Information Administration. Available online: https://www.eia.gov/energyexplained/hydropower/ocean-thermal-energy-conversion.php (accessed on 5 March 2024).
43. Rajagopalan K, Nihous GC. An assessment of global ocean thermal energy conversion resources with a high-resolution ocean general circulation model. Journal of Energy Resources Technology. 2013; 135(4). doi: 10.1115/1.4023868
44. Denholm P, Hand M, Jackson M, et al. Land Use Requirements of Modern Wind Power Plants in the United States. Office of Scientific and Technical Information (OSTI); 2009. doi: 10.2172/964608
45. Imhan N. Area Required for solar PV power plants—Suncyclopedia. Available online: http://www.suncyclopedia.com/en/area-required-for-solar-pv-power-plants/ (accessed on 20 August 2021).
46. Dumrul H, Fatih AR, Taşkesen E. Dust effect on PV modules: Its cleaning methods. In: Innovative Research in Engineering. Duvar Publishing; 2023.
47. Vega LA, Michaelis D. First generation 50 MW OTEC plantship for the production of electricity and desalinated water. Presented at the Offshore Technology Conference; May 2010; Houston, Texas, USA. doi: 10.4043/20957-ms
48. Adiputra R, Utsunomiya T, Koto J, et al. Preliminary design of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia. Journal of Marine Science and Technology. 2019; 25(1): 48-68. doi: 10.1007/s00773-019-00630-7
49. Hurtt J, Pellen A, Nagurny J. OTEC power efficiency challenges. In: Proceedings of the Offshore Technology Conference; May 2010; Houston, Texas, USA. doi: 10.4043/20498-MS
50. Smalley RE. Future global energy prosperity: The terawatt challenge. MRS Bulletin. 2005; 30(6): 412-417. doi: 10.1557/mrs2005.124
51. Diallo MS, Kotte MR, Cho M. Mining Critical metals and elements from seawater: Opportunities and challenges. Environmental Science & Technology. 2015; 49(16): 9390-9399. doi: 10.1021/acs.est.5b00463
52. Henderson GM. Ocean trace element cycles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2016; 374(2081): 20150300. doi: 10.1098/rsta.2015.0300
53. harette M, Smith W. The volume of earth’s ocean. Oceanography. 2010; 23(2): 112-114. doi: 10.5670/oceanog.2010.51
54. Shaterabadi M, Sadeghi S, Jirdehi MA. The role of green hydrogen in achieving low and net-zero carbon emissions: Climate change and global warming. In: Vahidinasab V, Mohammadi-Ivatloo B, Shiun Lim J (editors). Green Hydrogen in Power Systems. Springer; 2024. pp. 141-153. doi: 10.1007/978-3-031-52429-5_6
55. Dirik R, Taşkesen E, Dirik Ö. Using artificial intelligence in renewable energy sources (Turkish). Int Conf Recent Acad Stud. 2023; 1(1): 28-35. doi: 10.59287/icras.667
56. Binns C. A solution for California’s wildfire safety deficit. Stanford News Service. Available online: https://news.stanford.edu/press-releases/2023/08/07/resilient-power-grids/ (accessed on 9 March 2024).
57. NASA. Joint NASA, NOAA Study finds earth’s energy imbalance has doubled. Geophysical Research Letters. Available online: https://www.climate.gov/news-features/feed/joint-nasa-noaa-study-finds-earths-energy-imbalance-has-doubled (accessed on 9 March 2024).
58. International Maritime Organization. IMO 2020: consistent implementation of MARPOL Annex VI. Available online: https://www.imo.org/en/MediaCentre/PressBriefings/pages/34-IMO-2020-sulphur-limit-.aspx (accessed on 9 March 2024).
59. Hansen JE, Sato M, Simons L, et al. Global warming in the pipeline. Oxford Open Climate Change. 2023; 3(1). doi: 10.1093/oxfclm/kgad008
60. Caldwell Z. Climate Migration. CQ Press; 2023. doi: 10.4135/cqresrre20231013
61. Baird J. The Diverse Energy Potential of the Water Carrier Hydrogen. Climate CoLab; 2015.
62. USGS. Saltwater intrusion. https://www.usgs.gov/mission-areas/water-resources/science/saltwater-intrusion (accessed on 9 March 2024).
63. Roquet F, Ferreira D, Caneill R, et al. Unique thermal expansion properties of water key to the formation of sea ice on Earth. Science Advances. 2022; 8(46). doi: 10.1126/sciadv.abq0793
64. Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century. Nature. 2021; 592(7856): 726-731. doi: 10.1038/s41586-021-03436-z
65. Baynes K, Boening C. Ice Melt, Global sea level—NASA sea level change portal. Available online: https://sealevel.nasa.gov/understanding-sea-level/global-sea-level/ice-melt (accessed on 9 March 2024).
66. IPCC. IPCC AR6 WGIII: CDR Factsheet. Available online: https://www.ipcc.ch/report/ar6/wg3/downloads/outreach/IPCC_AR6_WGIII_Factsheet_CDR.pdf (accessed on 11 March 2024).
67. Vidler F. Accountability for CO2 Climate Crisis by Carbon Majors’ Emissions in Oil and Gas Production? Available online: https://ssrn.com/abstract=4403449 (accessed on 11 March 2024).
68. Daily CO2. Available online: https://www.co2.earth/daily-co2 (accessed on 11 March 2024).
69. Rau GH, Carroll SA, Bourcier WL, et al. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production. Proceedings of the National Academy of Sciences. 2013; 110(25): 10095-10100. doi: 10.1073/pnas.1222358110
70. Shepherd JM. Carbon, climate change, and controversy. Animal Frontiers. 2011; 1(1): 5-13. doi: 10.2527/af.2011-0001
71. Evans S. Direct CO2 capture machines could use ‘a quarter of global energy’ in 2100. Available online: https://www.carbonbrief.org/direct-co2-capture-machines-could-use-quarter-global-energy-in-2100/ (accessed on 12 March 2024).
72. National Centers for Environmental Information, National Oceanic and Atmospheric Administration. Annual 2005 Tropical Cyclones Report. Available online: https://www.ncei.noaa.gov/access/monitoring/monthly-report/tropical-cyclones/202213 (accessed on 12 March 2024).
73. Donahue MZ. Can we capture energy from a hurricane? Available online: https://www.smithsonianmag.com/innovation/can-we-capture-energy-hurricane-180960750/ (accessed on 12 March 2024).
74. Martel L, Smith P, Rizea S, et al. Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012. Office of Scientific and Technical Information (OSTI); 2012. doi: 10.2172/1045340
75. Vega LA. Economies of ocean thermal energy conversion (OTEC): An update. Proceedings of the Annual Offshore Technology Conference. 2010; 4: 3239-3256. doi: 10.4043/21016-MS
76. Muralidharan S. Assessment of ocean thermal energy conversion. Available online: http://dspace.mit.edu/handle/1721.1/76927#files-area (accessed on 23 August 2021).
77. Canada B of Inflation Calculator—Bank of Canada. Inflation calculator. Available online: https://www.bankofcanada.ca/rates/related/inflation-calculator/ (accessed on 13 March 2024).
78. Srinivasan N, Sridhar M, Agrawal M. Study on the cost effective ocean thermal energy conversion power plant. Presented at the 2010 Offshore Technology Conference; 3-6 May 2010; Houston, Texas, USA. doi: 10.2523/20340-MS
79. Xiao C, Gulfam R. Opinion on ocean thermal energy conversion (OTEC). Frontiers in Energy Research. 2023; 11: 1115695. doi: 10.3389/fenrg.2023.1115695
80. IMF. Fossil fuel subsidies surged to record $7 trillion. Available online: https://www.imf.org/en/Blogs/Articles/2023/08/24/fossil-fuel-subsidies-surged-to-record-7-trillion (accessed on 13 March 2024).
81. Gillespie T. Energy costs set to reach record 13% of global GDP in 2022—Bloomberg. Available online: https://www.bloomberg.com/news/articles/2022-03-16/energy-costs-set-to-reach-record-13-of-global-gdp-this-year (accessed on 13 March 2024).
82. World Bank. Gross Domestic Product 2022, PPP. Available online: https://databankfiles.worldbank.org/public/ddpext_download/GDP_PPP.pdf (accessed on 13 March 2024).
83. Gajdzik B, Wolniak R, Nagaj R, et al. The influence of the global energy crisis on energy efficiency: A comprehensive analysis. Energies. 2024; 17(4): 947. doi: 10.3390/en17040947
84. Langer J, Quist J, Blok K. Upscaling scenarios for ocean thermal energy conversion with technological learning in Indonesia and their global relevance. Renewable and Sustainable Energy Reviews. 2022; 158: 112086. doi: 10.1016/j.rser.2022.112086
85. Stern N. The stern review on the economic effects of climate change. Population and Development Review. 2006; 32(4): 793-798. doi: 10.1111/j.1728-4457.2006.00153.x
86. Vakulchuk R, Overland I. The failure to decarbonize the global energy education system: Carbon lock-in and stranded skill sets. Energy Research & Social Science. 2024; 110: 103446. doi: 10.1016/j.erss.2024.103446
87. Unctad. Review of maritime transport 2023—Chapter 2: World Shipping Fleet, Services, and Freight Rates. Available online: https://shop.un.org/ (accessed on 13 March 2024).
88. Service CR. U.S. Commercial shipbuilding in a global context. Available online: https://crsreports.congress.gov (accessed on 13 March 2024).
89. Trading Economics. Magnesium—Price—Chart—Historical Data—News. Available online: https://tradingeconomics.com/commodity/magnesium (accessed on 13 March 2024).
90. Irving L. The precipitation of calcium and magnesium from sea water. Journal of the Marine Biological Association of the United Kingdom. 1926; 14(2): 441-446. doi: 10.1017/s002531540000792x
91. Sharkh BA, Al-Amoudi AA, Farooque M, et al. Seawater desalination concentrate—A new frontier for sustainable mining of valuable minerals. npj Clean Water. 2022; 5(1). doi: 10.1038/s41545-022-00153-6
92. Coxworth B. Magnesium alloys claimed to lighten heat removal systems by one third. Available online: https://newatlas.com/materials/magnesium-alloys-heat-removal-systems/ (accessed on 9 July 2022).
93. UNDP. What is just transition? And why is it important? Available online: https://climatepromise.undp.org/news-and-stories/what-just-transition-and-why-it-important (accessed on 13 March 2024).
94. Taşkesen E, İlbeyoğlu S, Üren R. Evaluation of Coronavirus in Terms of Occupational Health and Safety. YAZ; 2023. pp. 119-139.
95. United States Government Accountability Office. NAVY AIRCRAFT cost-effectiveness of conventionally and nuclear-powered carriers. Available online: https://www.gao.gov/products/nsiad-98-1 (accessed on 23 August 2021).
96. Biden J. Remarks by President Biden in meeting on the build back better world initiative. Available online: https://www.whitehouse.gov/briefing-room/speeches-remarks/2021/11/02/remarks-by-president-biden-in-meeting-on-the-build-back-better-world-initiative/ (accessed on 15 March 2024).
DOI: https://doi.org/10.24294/tse.v7i2.5268
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Jim Baird
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.