Rhizospheric bacteria: Potent source of phytohormones and phytostimulants for horticultural plants in agronomy

Jagruti V. Chauhan, Sangeeta D. Gohel

Article ID: 4980
Vol 7, Issue 2, 2024

VIEWS - 73 (Abstract) 49 (PDF)

Abstract


Horticultural crops are rich in constituents such as proteins, carbohydrates, vitamins, and minerals important for human health. Under biotic and abiotic stress conditions, rhizospheric bacteria are powerful sources of phytohormones such as indole acetic acid (IAA), gibberellic acid (GA), abscisic acid (ABA) and Plant growth regulators including cytokines, ammonia, nitrogen, siderophores, phosphate, and extra cellular enzymes. These phytohormones help horticultural crops grow both directly and indirectly. In recent agricultural practices, the massive use of chemical fertilizers causes a major loss of agricultural land that can be resolved by using the potent plant growth-promoting rhizospheric bacteria that protect the agricultural and horticultural crops from the adverse effect of phytopathogens and increase crop quality and yield. This review highlights the role of multifunctional rhizospheric bacteria in the growth promotion of horticultural crops in greenhouse conditions and agricultural fields. The relevance of plant growth hormones in horticultural crops highlighted in the current study is crucial for sustainable agriculture.


Keywords


rhizospheric bacteria; Plant growth regulators; horticultural plants; phytohormones; abiotic stress

Full Text:

PDF


References


1. Yadav AN, Verma P, Kumar S, et al. Actinobacteria from Rhizosphere. New and Future Developments in Microbial Biotechnology and Bioengineering. Published online 2018: 13-41. doi: 10.1016/b978-0-444-63994-3.00002-3

2. Hiltner, L. About recent experiences and problems in the field of soil bacteriology and with special consideration of foundation and fallow land. Work. Deut. Agricultural Society. 1904; 98: 59-78.

3. Poria V, Dębiec-Andrzejewska K, Fiodor A, et al. Plant Growth-Promoting Bacteria (PGPB) integrated phytotechnology: A sustainable approach for remediation of marginal lands. Frontiers in Plant Science. 2022; 13. doi: 10.3389/fpls.2022.999866

4. Kumar M, Giri VP, Pandey S, et al. Plant-Growth-Promoting Rhizobacteria Emerging as an Effective Bioinoculant to Improve the Growth, Production, and Stress Tolerance of Vegetable Crops. International Journal of Molecular Sciences. 2021; 22(22): 12245. doi: 10.3390/ijms222212245

5. Nathani NM, Mootapally C, Gadhvi IR, et al. Marine Niche: Applications in Pharmaceutical Sciences. Springer Singapore; 2020. doi: 10.1007/978-981-15-5017-1

6. Gupta S, Kaushal R, Gupta S. Plant growth promoting Rhizobacteria: Bioresource for enhanced productivity of Solanaceous vegetable crops. Acta Scientific Agriculture. 2017; 1(3): 10-5.

7. Kurabachew H, Wydra K. Characterization of plant growth promoting rhizobacteria and their potential as bioprotectant against tomato bacterial wilt caused by Ralstonia solanacearum. Biological Control. 2013; 67(1): 75-83. doi: 10.1016/j.biocontrol.2013.07.004

8. Biswal A, Rout CK. Effect of Cytokinin on Fruit Crops. International Journal of Current Microbiology and Applied Sciences. 2020; 9(11): 2896-2903. doi: 10.20546/ijcmas.2020.911.351

9. Zhao D, Wang Y, Feng C, et al. Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants. The Plant Journal. 2020; 103(1): 166-183. doi: 10.1111/tpj.14717

10. Akhtar SS, Mekureyaw MF, Pandey C, et al. Role of Cytokinins for Interactions of Plants With Microbial Pathogens and Pest Insects. Frontiers in Plant Science. 2020; 10. doi: 10.3389/fpls.2019.01777

11. Ghosh S, Halder S. Effect of different kinds of gibberellin on temperate fruit crops: A review. The Pharma Innovation Journal. 2018; 7(3): 315-9.

12. Spaepen S, Vanderleyden J, Remans R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiology Reviews. 2007; 31(4): 425-448. doi: 10.1111/j.1574-6976.2007.00072.x

13. Purwantisari S, Parman S, Karnoto, et al. The growth and the production of potato plant supplemented by plant growth promoting rhizobacteria (PGPR). Journal of Physics: Conference Series. 2019; 1217(1): 012144. doi: 10.1088/1742-6596/1217/1/012144

14. Chhaya, Yadav B, Jogawat A, et al. An overview of recent advancement in phytohormones-mediated stress management and drought tolerance in crop plants. Plant Gene. 2021; 25: 100264. doi: 10.1016/j.plgene.2020.100264

15. Chauhan J, Bhatt N, Pankaj C, et al. Plant Growth Promoting Attributes and Antimicrobial Potential of Rhizospheric Bacterial Strain Asp49 Isolated From Juna Amrapar, Near Little Rann of Kutch, Gujarat, India. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3560103

16. Vaghela N, Gohel S. Medicinal plant‐associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. Journal of Basic Microbiology. 2022; 63(3-4): 308-325. doi: 10.1002/jobm.202200361

17. Singh Y, Prajapati S. Status of Horticultural Crops. Genetic Engineering of Horticultural Crops. Published online 2018: 1-21. doi: 10.1016/b978-0-12-810439-2.00001-5

18. Lichtfouse E (editor). Sustainable Agriculture Reviews. Springer International Publishing; 2017. doi: 10.1007/978-3-319-48006-0

19. Bhimani AA, Bhimani HD, Vaghela NR, et al. Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost. Biologia. 2024; 79(3): 953-974. doi: 10.1007/s11756-023-01592-3

20. Chauhan JV, Mathukiya RP, Singh SP, et al. Two-step purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alkaline serine protease from Nocardiopsis alba strain OM-5. International Journal of Biological Macromolecules. 2021; 169: 39-50. doi: 10.1016/j.ijbiomac.2020.12.061

21. Majithiya V, Gohel S. Isolation and Screening of Extracellular Enzymes Producing Actinobacteria Associated With Sea Weed. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3560095

22. Demeulenaere MJ, Beeckman T. The interplay between auxin and the cell cycle during plant development. In: Auxin and its role in plant development. Vienna, Austria; 2014; 119-141. doi: 10.1007/978-3-7091-1526-8-7

23. Retzer K, Korbei B, Luschnig C. Auxin and tropisms. In: Auxin and its role in plant development. Vienna, Austria; 2014; 361-87. doi: 10.1007/978-3-7091-1526-8-16

24. Ruzza V, Sessa G, Sassi M, et al. Auxin coordinates shoot and root development during shade avoidance response. In: Auxin and its role in plant development. Vienna, Austria; 2014; 389-412. doi: 10.1007/978-3-7091-1526-8-17

25. Boiero L, Perrig D, Masciarelli O, et al. Phytohormone production by three strains of Bradyrhizobium japonicum and possible physiological and technological implications. Applied Microbiology and Biotechnology. 2007; 74(4): 874-880. doi: 10.1007/s00253-006-0731-9

26. Anzuay MS, Prenollio A, Ludueña LM, et al. Enterobacter sp. J49: A Native Plant Growth-Promoting Bacteria as Alternative to the Application of Chemical Fertilizers on Peanut and Maize Crops. Current Microbiology. 2023; 80(3). doi: 10.1007/s00284-023-03181-8

27. Contesto C, Milesi S, Mantelin S, et al. The auxin-signaling pathway is required for the lateral root response of Arabidopsis to the rhizobacterium Phyllobacterium brassicacearum. Planta. 2010; 232(6): 1455-1470. doi: 10.1007/s00425-010-1264-0

28. Shi CL, Park HB, Lee JS, et al. Inhibition of Primary Roots and Stimulation of Lateral Root Development in Arabidopsis thaliana by the Rhizobacterium Serratia marcescens 90-166 Is through Both Auxin-Dependent and -Independent Signaling Pathways. Molecules and Cells. 2010; 29(3): 251-258. doi: 10.1007/s10059-010-0032-0

29. Iqbal A, Hasnain S. Aeromonas punctata PNS-1: a promising candidate to change the root morphogenesis of Arabidopsis thaliana in MS and sand system. Acta Physiologiae Plantarum. 2012; 35(3): 657-665. doi: 10.1007/s11738-012-1106-8

30. Beauregard PB, Chai Y, Vlamakis H, et al. Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences. 2013; 110(17). doi: 10.1073/pnas.1218984110

31. Spaepen S, Vanderleyden J. Auxin and Plant-Microbe Interactions. Cold Spring Harbor Perspectives in Biology. 2010; 3(4): a001438-a001438. doi: 10.1101/cshperspect.a001438

32. Mengistie GY, Awlachew ZT. Evaluation of the Plant Growth Promotion Effect of Bacillus Species on Different Varieties of Tomato (Solanum lycopersicum L.) Seedlings. Muzzalupo I, ed. Advances in Agriculture. 2022; 2022: 1-6. doi: 10.1155/2022/1771147

33. Bagale P, Pandey S, Regmi P, et al. Role of Plant Growth Regulator “Gibberellins” in Vegetable Production: An Overview. Int J Hortic Sci Technol. 2022; 9(3). doi: 10.22059/ijhst.2021.329114.495

34. Chauhan J, Gohel S. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Brazilian Journal of Microbiology. 2022; 53(4): 1817-1828. doi: 10.1007/s42770-022-00794-2

35. Vaghela N, Chauhan J, Gohel S. Isolation and Plant Growth Promoting Traits of Actinobacteria Strain KhEc 12. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3559994

36. Qi X, Li Q, Shen J, et al. Sugar enhances waterlogging‐induced adventitious root formation in cucumber by promoting auxin transport and signalling. Plant, Cell & Environment. 2020; 43(6): 1545-1557. doi: 10.1111/pce.13738

37. Zhang T, Li W, Xie R, et al. CpARF2 and CpEIL1 interact to mediate auxin–ethylene interaction and regulate fruit ripening in papaya. The Plant Journal. 2020; 103(4): 1318-1337. doi: 10.1111/tpj.14803

38. D’Incà E, Cazzaniga S, Foresti C, et al. VviNAC33 promotes organ de‐greening and represses vegetative growth during the vegetative‐to‐mature phase transition in grapevine. New Phytologist. 2021; 231(2): 726-746. doi: 10.1111/nph.17263

39. Xiao G, He P, Zhao P, et al. Genome-wide identification of the GhARF gene family reveals that GhARF2 and GhARF18 are involved in cotton fibre cell initiation. Journal of Experimental Botany. 2018; 69(18): 4323-4337. doi: 10.1093/jxb/ery219

40. Liu H, Xie W, Zhang L, et al. Auxin Biosynthesis by the YUCCA6 Flavin Monooxygenase Gene in Woodland Strawberry. Journal of Integrative Plant Biology. 2014; 56(4): 350-363. doi: 10.1111/jipb.12150

41. van der Knaap E, Chakrabarti M, Chu YH, et al. What lies beyond the eye: the molecular mechanisms regulating tomato fruit weight and shape. Frontiers in Plant Science. 2014; 5. doi: 10.3389/fpls.2014.00227

42. Dobbelaere S, Croonenborghs A, Thys A, et al. Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant and soil. 1999; 212(2): 153-62. doi: 10.1023/A:1004658000815

43. Steenhoudt O, Vanderleyden J. Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiology Reviews. 2000; 24(4): 487-506. doi: 10.1111/j.1574-6976.2000.tb00552.x

44. Bashan Y, Holguin G. Azospirillum– plant relationships: environmental and physiological advances (1990–1996). Canadian Journal of Microbiology. 1997; 43(2): 103-121. doi: 10.1139/m97-015

45. Vacheron J, Desbrosses G, Bouffaud ML, et al. Plant growth-promoting rhizobacteria and root system functioning. Frontiers in Plant Science. 2013; 4. doi: 10.3389/fpls.2013.00356

46. Timmusk S, Nicander B, Granhall U, et al. Cytokinin production by Paenibacillus polymyxa. Soil Biology and Biochemistry. 1999; 31(13): 1847-52. doi: 10.1016/S0038-0717(99)00113-3

47. Patel T, Saraf M. Biosynthesis of phytohormones from novel rhizobacterial isolates and their in vitro plant growth-promoting efficacy. Journal of Plant Interactions. 2017; 12(1): 480-487. doi: 10.1080/17429145.2017.1392625

48. Arkhipova TN, Veselov SU, Melentiev AI, et al. Ability of bacterium Bacillus subtilis to produce cytokinins and to influence the growth and endogenous hormone content of lettuce plants. Plant and Soil. 2005; 272(1-2): 201-209. doi: 10.1007/s11104-004-5047-x

49. Werner T, Motyka V, Laucou V, et al. Cytokinin-Deficient Transgenic Arabidopsis Plants Show Multiple Developmental Alterations Indicating Opposite Functions of Cytokinins in the Regulation of Shoot and Root Meristem Activity. The Plant Cell. 2003; 15(11): 2532-2550. doi: 10.1105/tpc.014928

50. Werner T, Nehnevajova E, Köllmer I, et al. Root-Specific Reduction of Cytokinin Causes Enhanced Root Growth, Drought Tolerance, and Leaf Mineral Enrichment in Arabidopsis and Tobacco . The Plant Cell. 2010; 22(12): 3905-3920. doi: 10.1105/tpc.109.072694

51. Kudoyarova GR, Melentiev AI, Martynenko EV, et al. Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiology and Biochemistry. 2014; 83: 285-291. doi: 10.1016/j.plaphy.2014.08.015

52. Ilangumaran G, Smith DL. Plant Growth Promoting Rhizobacteria in Amelioration of Salinity Stress: A Systems Biology Perspective. Frontiers in Plant Science. 2017; 8. doi: 10.3389/fpls.2017.01768

53. Davies WJ, Kudoyarova G, Hartung W. Long-distance ABA Signaling and Its Relation to Other Signaling Pathways in the Detection of Soil Drying and the Mediation of the Plant’s Response to Drought. Journal of Plant Growth Regulation. 2005; 24(4). doi: 10.1007/s00344-005-0103-1

54. Arkhipova TN, Prinsen E, Veselov SU, et al. Cytokinin producing bacteria enhance plant growth in drying soil. Plant and Soil. 2007; 292(1-2): 305-315. doi: 10.1007/s11104-007-9233-5

55. Albacete A, Ghanem ME, Martinez-Andujar C, et al. Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato (Solanum lycopersicum L.) plants. Journal of Experimental Botany. 2008; 59(15): 4119-4131. doi: 10.1093/jxb/ern251

56. Xu J, Li XL, Luo L. Effects of Engineered Sinorhizobium meliloti on Cytokinin Synthesis and Tolerance of Alfalfa to Extreme Drought Stress. Applied and Environmental Microbiology. 2012; 78(22): 8056-8061. doi: 10.1128/aem.01276-12

57. Fahima A, Levinkron S, Maytal Y, et al. Cytokinin treatment modifies litchi fruit pericarp anatomy leading to reduced susceptibility to post-harvest pericarp browning. Plant Science. 2019; 283: 41-50. doi: 10.1016/j.plantsci.2019.02.006

58. Großkinsky DK, Naseem M, Abdelmohsen UR, et al. Cytokinins Mediate Resistance againstPseudomonas syringaein Tobacco through Increased Antimicrobial Phytoalexin Synthesis Independent of Salicylic Acid Signaling . Plant Physiology. 2011; 157(2): 815-830. doi: 10.1104/pp.111.182931

59. O’Brien JA, Benková E. Cytokinin cross-talking during biotic and abiotic stress responses. Frontiers in Plant Science. 2013; 4. doi: 10.3389/fpls.2013.00451

60. Liu F, Xing S, Ma H, et al. Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology. 2013; 97(20): 9155-9164. doi: 10.1007/s00253-013-5193-2

61. Glick BR. Plant Growth-Promoting Bacteria: Mechanisms and Applications. Scientifica. 2012; 2012: 1-15. doi: 10.6064/2012/963401

62. Azcón R, Barea JM. Synthesis of auxins, gibberellins and cytokinins byAzotobacter vinelandii andAzotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil. 1975; 43(1-3): 609-619. doi: 10.1007/bf01928522

63. Barea JM, Brown ME. Effects on Plant Growth Produced by Azotobacter paspali Related to Synthesis of Plant Growth Regulating Substances. Journal of Applied Bacteriology. 1974; 37(4): 583-593. doi: 10.1111/j.1365-2672.1974.tb00483.x

64. Keister DL, Cregan PB, eds. The Rhizosphere and Plant Growth. Springer Netherlands; 1991. doi: 10.1007/978-94-011-3336-4

65. Plackett ARG, Wilson ZA. Gibberellins and Plant Reproduction. Annual Plant Reviews online. Published online July 17, 2017: 323-358. doi: 10.1002/9781119312994.apr0540

66. Urbanova T, Leubner‐Metzger G. Gibberellins and seed germination. Annual Plant Reviews, Volume 49. Published online March 11, 2016: 253-284. doi: 10.1002/9781119210436.ch9

67. Guo H, Wang Y, Liu H, et al. Exogenous GA3 Application Enhances Xylem Development and Induces the Expression of Secondary Wall Biosynthesis Related Genes in Betula platyphylla. International Journal of Molecular Sciences. 2015; 16(9): 22960-22975. doi: 10.3390/ijms160922960

68. Wang GL, Que F, Xu ZS, et al. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biology. 2015; 15(1). doi: 10.1186/s12870-015-0679-y

69. Zhang X, Zhao B, Sun Y, et al. Effects of gibberellins on important agronomic traits of horticultural plants. Frontiers in Plant Science. 2022; 13. doi: 10.3389/fpls.2022.978223

70. Magome H, Kamiya Y. Inactivation processes. Annual Plant Reviews, Volume 49. Published online March 11, 2016: 73-94. doi: 10.1002/9781119210436.ch3

71. Martínez C, Espinosa‐Ruiz A, Prat S. Gibberellins and plant vegetative growth. Annual Plant Reviews, Volume 49. Published online March 11, 2016: 285-322. doi: 10.1002/9781119210436.ch10

72. Bottini R, Cassán F, Piccoli P. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Applied Microbiology and Biotechnology. 2004; 65(5). doi: 10.1007/s00253-004-1696-1

73. Kang SM, Khan AL, Waqas M, et al. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions. 2014; 9(1): 673-682. doi: 10.1080/17429145.2014.894587

74. Joo GJ, Kim YM, Kim JT, et al. Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. The Journal of Microbiology. 2005, 43(6):510-5.

75. Liu C, Xiao P, Jiang F, et al. Exogenous gibberellin treatment improves fruit quality in self-pollinated apple. Plant Physiology and Biochemistry. 2022; 174(1): 11-21. doi: 10.1016/j.plaphy.2022.01.029

76. Wang HT, Ou LY, Chen TA, et al. Refrigeration, forchlorfenuron, and gibberellic acid treatments differentially regulate chlorophyll catabolic pathway to delay yellowing of broccoli. Postharvest Biology and Technology. 2023; 197: 112221. doi: 10.1016/j.postharvbio.2022.112221

77. Liu H, Deng R, Huang C, et al. Exogenous gibberellins alter morphology and nutritional traits of garlic (Allium sativum L.) bulb. Scientia Horticulturae. 2019; 246: 298-306. doi: 10.1016/j.scienta.2018.11.003

78. Xie Y, Onik J, Hu X, et al. Effects of (S)-Carvone and Gibberellin on Sugar Accumulation in Potatoes during Low Temperature Storage. Molecules. 2018; 23(12): 3118. doi: 10.3390/molecules23123118

79. Hu Z, Weijian L, Yali F, et al. Gibberellic acid enhances postharvest toon sprout tolerance to chilling stress by increasing the antioxidant capacity during the short-term cold storage. Scientia Horticulturae. 2018; 237: 184-191. doi: 10.1016/j.scienta.2018.04.018

80. Lee KE, Radhakrishnan R, Kang SM, et al. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion. Journal of Microbiology and Biotechnology. 2015; 25(9): 1467-1475. doi: 10.4014/jmb.1502.02011

81. Shahzad R, Waqas M, Khan AL, et al. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa. Plant Physiology and Biochemistry. 2016; 106: 236-243. doi: 10.1016/j.plaphy.2016.05.006

82. Cohen AC, Bottini R, Pontin M, et al. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiologia Plantarum. 2014; 153(1): 79-90. doi: 10.1111/ppl.12221

83. Sgroy V, Cassán F, Masciarelli O, et al. Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology. 2009; 85(2): 371-381. doi: 10.1007/s00253-009-2116-3

84. Sah SK, Reddy KR, Li J. Abscisic Acid and Abiotic Stress Tolerance in Crop Plants. Frontiers in Plant Science. 2016; 7. doi: 10.3389/fpls.2016.00571

85. Vargas L, Santa Brígida AB, Mota Filho JP, et al. Drought Tolerance Conferred to Sugarcane by Association with Gluconacetobacter diazotrophicus: A Transcriptomic View of Hormone Pathways. Yang H, ed. PLoS ONE. 2014; 9(12): e114744. doi: 10.1371/journal.pone.0114744

86. Shakirova F, Allagulova C, Maslennikova D, et al. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiology and Biochemistry. 2016; 108: 539-548. doi: 10.1016/j.plaphy.2016.07.013

87. Schwartz SH, Qin X, Zeevaart JAD. Elucidation of the Indirect Pathway of Abscisic Acid Biosynthesis by Mutants, Genes, and Enzymes. Plant Physiology. 2003; 131(4): 1591-1601. doi: 10.1104/pp.102.017921

88. Finkelstein R. Abscisic acid synthesis and response. The Arabidopsis book/American society of plant biologists. 2013, 11. doi: 10.1199%2Ftab.0166

89. Forchetti G, Masciarelli O, Alemano S, et al. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Applied Microbiology and Biotechnology. 2007; 76(5): 1145-1152. doi: 10.1007/s00253-007-1077-7

90. Rashad FM, Fathy HM, El-Zayat AS, et al. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiological Research. 2015; 175: 34-47. doi: 10.1016/j.micres.2015.03.002

91. Kavi Kishor PB, Tiozon RN, Fernie AR, et al. Abscisic acid and its role in the modulation of plant growth, development, and yield stability. Trends in Plant Science. 2022; 27(12): 1283-1295. doi: 10.1016/j.tplants.2022.08.013

92. Gao F, Li J, Li W, et al. Abscisic acid and polyamines coordinately regulate strawberry drought responses. Plant Stress. 2024; 11: 100387. doi: 10.1016/j.stress.2024.100387

93. Ratnaningsih HR, Noviana Z, Dewi TK, et al. IAA and ACC deaminase producing-bacteria isolated from the rhizosphere of pineapple plants grown under different abiotic and biotic stresses. Heliyon. 2023; 9(6): e16306. doi: 10.1016/j.heliyon.2023.e16306

94. Saleem S, Iqbal A, Ahmed F, et al. Phytobeneficial and salt stress mitigating efficacy of IAA producing salt tolerant strains in Gossypium hirsutum. Saudi Journal of Biological Sciences. 2021; 28(9): 5317-5324. doi: 10.1016/j.sjbs.2021.05.056

95. Lebrazi S, Niehaus K, Bednarz H, et al. Screening and optimization of indole-3-acetic acid production and phosphate solubilization by rhizobacterial strains isolated from Acacia cyanophylla root nodules and their effects on its plant growth. Journal of Genetic Engineering and Biotechnology. 2020; 18(1): 71. doi: 10.1186/s43141-020-00090-2

96. Khan MA, Abbasi BH, Shah NA, et al. Analysis of metabolic variations throughout growth and development of adventitious roots in Silybum marianum L. (Milk thistle), a medicinal plant. Plant Cell, Tissue and Organ Culture (PCTOC). 2015; 123(3): 501-510. doi: 10.1007/s11240-015-0854-8

97. Nautiyal J, Christian M, Parker MG. Distinct functions for RIP140 in development, inflammation, and metabolism. Trends in Endocrinology & Metabolism. 2013; 24(9): 451-459. doi: 10.1016/j.tem.2013.05.001

98. Barassi CA, Ayrault G, Creus CM, et al. Seed inoculation with Azospirillum mitigates NaCl effects on lettuce. Scientia Horticulturae. 2006; 109(1): 8-14. doi: 10.1016/j.scienta.2006.02.025

99. Nazli F, Wang X, Ahmad M, et al. Efficacy of Indole Acetic Acid and Exopolysaccharides-Producing Bacillus safensis Strain FN13 for Inducing Cd-Stress Tolerance and Plant Growth Promotion in Brassica juncea (L.). Applied Sciences. 2021; 11(9): 4160. doi: 10.3390/app11094160

100. Zhou J, Cheng K, Huang G, et al. Effects of exogenous 3-indoleacetic acid and cadmium stress on the physiological and biochemical characteristics of Cinnamomum camphora. Ecotoxicology and Environmental Safety. 2020; 191: 109998. doi: 10.1016/j.ecoenv.2019.109998

101. Sziderics AH, Rasche F, Trognitz F, et al. Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuumL.). Canadian Journal of Microbiology. 2007; 53(11): 1195-1202. doi: 10.1139/w07-082

102. Ait Barka E, Nowak J, Clément C. Enhancement of Chilling Resistance of Inoculated Grapevine Plantlets with a Plant Growth-Promoting Rhizobacterium,Burkholderia phytofirmansStrain PsJN. Applied and Environmental Microbiology. 2006; 72(11): 7246-7252. doi: 10.1128/aem.01047-06

103. Woo JI, Injamum-Ul-Hoque Md, Zainurin N, et al. Gibberellin-Producing Bacteria Isolated from Coastal Soil Enhance Seed Germination of Mallow and Broccoli Plants under Saline Conditions. BioTech. 2023; 12(4): 66. doi: 10.3390/biotech12040066

104. Rashed N M, Shala AwadY, Mahmoud MA. Alleviation of Salt Stress in Nigella Sativa L. By Gibberellic Acid and Rhizobacteria. Alexandria Science Exchange Journal. 2017; 38(6): 785-799. doi: 10.21608/asejaiqjsae.2017.4413

105. Lee KE, Radhakrishnan R, Kang SM, et al. Enterococcus faecium LKE12 Cell-Free Extract Accelerates Host Plant Growth via Gibberellin and Indole-3-Acetic Acid Secretion. Journal of Microbiology and Biotechnology. 2015; 25(9): 1467-1475. doi: 10.4014/jmb.1502.02011

106. Halo BA, Khan AL, Waqas M, et al. Endophytic bacteria (Sphingomonassp. LK11) and gibberellin can improveSolanum lycopersicumgrowth and oxidative stress under salinity. Journal of Plant Interactions. 2015; 10(1): 117-125. doi: 10.1080/17429145.2015.1033659

107. Lotfi N, Soleimani A, Çakmakçı R, et al. Characterization of plant growth-promoting rhizobacteria (PGPR) in Persian walnut associated with drought stress tolerance. Scientific Reports. 2022; 12(1). doi: 10.1038/s41598-022-16852-6

108. Kang SM, Radhakrishnan R, Khan AL, et al. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiology and Biochemistry. 2014; 84: 115-124. doi: 10.1016/j.plaphy.2014.09.001

109. Waqas M, Khan AL, Kamran M, et al. Endophytic Fungi Produce Gibberellins and Indoleacetic Acid and Promotes Host-Plant Growth during Stress. Molecules. 2012; 17(9): 10754-10773. doi: 10.3390/molecules170910754

110. Zaheer MS, Ali HH, Iqbal MA, et al. Cytokinin Production by Azospirillum brasilense Contributes to Increase in Growth, Yield, Antioxidant, and Physiological Systems of Wheat (Triticum aestivum L.). Frontiers in Microbiology. 2022; 13. doi: 10.3389/fmicb.2022.886041

111. Martynenko E, Arkhipova T, Safronova V, et al. Effects of phytohormone-producing rhizobacteria on casparian band formation, ion homeostasis and salt tolerance of durum wheat. Biomolecules. 2022, 12(2):230. doi: 10.3390%2Fbiom12020230

112. Mekureyaw MF, Pandey C, Hennessy RC, et al. The cytokinin-producing plant beneficial bacterium Pseudomonas fluorescens G20-18 primes tomato (Solanum lycopersicum) for enhanced drought stress responses. Journal of Plant Physiology. 2022; 270: 153629. doi: 10.1016/j.jplph.2022.153629

113. Selvakumar G, Bindu GH, Bhatt RM, et al. Osmotolerant Cytokinin Producing Microbes Enhance Tomato Growth in Deficit Irrigation Conditions. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences. 2016; 88(2): 459-465. doi: 10.1007/s40011-016-0766-3

114. Correa PA, Nosheen A, Yasmin H, et al. Regulatory role of microbial inoculants to induce salt stress tolerance in horticulture crops. Sustainable Horticulture. Published online 2022: 125-155. doi: 10.1016/b978-0-323-91861-9.00002-1

115. Shahzad R, Khan AL, Bilal S, et al. Inoculation of abscisic acid-producing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany. 2017; 136: 68-77. doi: 10.1016/j.envexpbot.2017.01.010

116. Salomon MV, Bottini R, de Souza Filho GA, et al. Bacteria isolated from roots and rhizosphere of Vitis vinifera retard water losses, induce abscisic acid accumulation and synthesis of defense‐related terpenes in in vitro cultured grapevine. Physiologia Plantarum. 2013; 151(4): 359-374. doi: 10.1111/ppl.12117

117. Jiang F, Chen L, Belimov AA, et al. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. Journal of Experimental Botany. 2012; 63(18): 6421-6430. doi: 10.1093/jxb/ers301

118. Belimov AA, Dodd IC, Safronova VI, et al. Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiology and Biochemistry. 2014; 74: 84-91. doi: 10.1016/j.plaphy.2013.10.032




DOI: https://doi.org/10.24294/th.v7i2.4980

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.