Role of rhizospheric microbial enzymes in plant growth promotion, antagonism, and sustainable agriculture: A review

Bhavini Galani, Jagruti Chauhan, Sangeeta Gohel

Article ID: 4902
Vol 7, Issue 2, 2024

VIEWS - 686 (Abstract) 244 (PDF)

Abstract


Plant growth-promoting rhizobacteria (PGPR) offer eco-friendly alternatives to chemical fertilizers, promoting sustainable agriculture by enhancing soil fertility, reducing pathogens, and aiding in stress resistance. In agriculture, they play a crucial role in plant growth promotion through the production of agroactive compounds and extracellular enzymes to promote plant health and protection against phytopathogens. In the rhizosphere, diverse microbial interactions, including those with bacteria and fungi, influence plant health by production of antimicrobial compounds. The antagonism displayed by rhizobacteria plays a crucial role in shaping microbial communities and has potential applications in developing a natural and environmentally friendly approach to pest control. The rhizospheric microbes showcase their ecological importance and potential for biotechnological applications in the context of plant-microbe interactions. The extracellular enzymes produced by rhizospheric microbes like amylases, chitinases, glucanases, cellulases, proteases, and ACC deaminase contribute to plant processes and stress response emphasizing their importance in sustainable agriculture. Moreover, this review highlights the new paradigm including artificial intelligence (AI) in sustainable horticulture and agriculture as a harmonious interaction between ecological networks for promoting soil health and microbial diversity that leads to a more robust and self-regulating agricultural system for protecting the environment in the future. Overall, this review emphasizes microbial interactions and the role of rhizospheric microbial extracellular enzymes which is crucial for developing eco-friendly approaches to enhance crop production and soil health.


Keywords


rhizospheric microbes; plant growth promotion; extracellular enzymes; phytopathogens; sustainable agriculture

Full Text:

PDF


References


1. Nadeem SM, Ahmad M, Zahir ZA, et al. The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances. 2014; 32(2): 429-448. doi: 10.1016/j.biotechadv.2013.12.005

2. Horikoshi K. Extremophiles Handbook. Published online 2011. doi: 10.1007/978-4-431-53898-1

3. Glick BR, Todorovic B, Czarny J, et al. Promotion of Plant Growth by Bacterial ACC Deaminase. Critical Reviews in Plant Sciences. 2007; 26(5-6): 227-242. doi: 10.1080/07352680701572966

4. Bérdy J. Bioactive Microbial Metabolites. The Journal of Antibiotics. 2005; 58(1): 1-26. doi: 10.1038/ja.2005.1

5. Olano C, Méndez C, Salas J. Antitumor Compounds from Marine Actinomycetes. Marine Drugs. 2009; 7(2): 210-248. doi: 10.3390/md7020210

6. Nathani NM, Mootapally C, Gadhvi IR, et al. Marine Niche: Applications in Pharmaceutical Sciences. Springer Singapore; 2020. doi: 10.1007/978-981-15-5017-1

7. Franco-Correa M, Quintana A, Duque C, et al. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology. 2010; 45(3): 209-217. doi: 10.1016/j.apsoil.2010.04.007

8. Tang X, Placella SA, Daydé F, et al. Phosphorus availability and microbial community in the rhizosphere of intercropped cereal and legume along a P-fertilizer gradient. Plant and Soil. 2016; 407(1-2): 119-134. doi: 10.1007/s11104-016-2949-3

9. Zhang L, Xu M, Liu Y, et al. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytologist. 2016; 210(3): 1022-1032. doi: 10.1111/nph.13838

10. Rosier A, Medeiros FHV, Bais HP. Defining plant growth promoting rhizobacteria molecular and biochemical networks in beneficial plant-microbe interactions. Plant and Soil. 2018; 428(1-2): 35-55. doi: 10.1007/s11104-018-3679-5

11. Raklami A, Bechtaoui N, Tahiri A ilah, et al. Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Frontiers in Microbiology. 2019; 10. doi: 10.3389/fmicb.2019.01106

12. Khoshru B, Mitra D, Khoshmanzar E, et al. Current scenario and future prospects of plant growth-promoting rhizobacteria: an economic valuable resource for the agriculture revival under stressful conditions. Journal of Plant Nutrition. 2020; 43(20): 3062-3092. doi: 10.1080/01904167.2020.1799004

13. Sarikhani MR, Aliasgharzad N, Khoshru B. P Solubilizing Potential of Some Plant Growth Promoting Bacteria Used as Ingredient in Phosphatic Biofertilizers with Emphasis on Growth Promotion of Zea mays L. Geomicrobiology Journal. 2019; 37(4): 327-335. doi: 10.1080/01490451.2019.1700323

14. El-Tarabily KA, St. J. Hardy GE, Sivasithamparam K. Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. European Journal of Plant Pathology. 2010; 128(4): 527-539. doi: 10.1007/s10658-010-9689-7

15. Monteiro P, Borba MP, Van Der Sand ST. Evaluation of the Antifungal Activity of Streptomyces sp. on Bipolarissorokiniana and the Growth Promotion of Wheat Plants. Journal of Agricultural Science. 2017; 9(12): 229. doi: 10.5539/jas.v9n12p229

16. Yasari E, Esmaeili A MA, Mozafari S, et al. Enhancement of Growth and Nutrient Uptake of Rapeseed (Brassica napus L.) by Applying Mineral Nutrients and Biofertilizers. Pakistan Journal of Biological Sciences. 2009; 12(2): 127-133. doi: 10.3923/pjbs.2009.127.133

17. Cheng Y, Yang R, Lyu M, et al. IdeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis. Applied and Environmental Microbiology. 2018; 84(22). doi: 10.1128/aem.01503-18

18. Polak EH, Provasi J. Odor sensitivity to geosmin enantiomers. Chemical Senses. 1992; 17(1): 23-26. doi: 10.1093/chemse/17.1.23

19. Vonothini G, Murugan M, Sivakumar K, et al. Optimization of protease production by an actinomycete strain, PS-18A isolated from an estuarine shrimp pond. African journal of biotechnology. 2008; 7(18).

20. Syed DG, Agasar D, Pandey A. Production and partial purification of α-amylase from a novel isolate Streptomyces gulbargensis. Journal of Industrial Microbiology & Biotechnology. 2008; 36(2): 189-194. doi: 10.1007/s10295-008-0484-9

21. Probanza A, Garcıa JL, Palomino MR, et al. Pinus pinea L. seedling growth and bacterial rhizosphere structure after inoculation with PGPR Bacillus (B. licheniformis CECT 5106 and B. pumilus CECT 5105). Applied Soil Ecology. 2002; 20(2): 75-84. doi: 10.1016/S0929-1393(02)00007-0

22. Chenniappan C, Narayanasamy M, Daniel GM, et al. Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biological Control. 2019; 129: 55-64. doi: 10.1016/j.biocontrol.2018.07.002

23. Chauhan J, Bhatt N, Pankaj C, et al. Plant Growth Promoting Attributes and Antimicrobial Potential of Rhizospheric Bacterial Strain Asp49 Isolated From Juna Amrapar, Near Little Rann of Kutch, Gujarat, India. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3560103

24. He Y, Pantigoso HA, Wu Z, et al. Co‐inoculation of Bacillus sp. And Pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. Journal of Applied Microbiology. 2019; 127(1): 196-207. doi: 10.1111/jam.14273

25. Shameer S, Prasad TNVKV. Plant growth promoting rhizobacteria for sustainable agricultural practices with special reference to biotic and abiotic stresses. Plant Growth Regulation. 2018; 84(3): 603-615. doi: 10.1007/s10725-017-0365-1

26. Bhimani AA, Bhimani HD, Vaghela NR, et al. Cultivation methods, characterization, and biocatalytic potential of organic solid waste degrading bacteria isolated from sugarcane rhizospheric soil and compost. Biologia. 2024; 79(3): 953-974. doi: 10.1007/s11756-023-01592-3

27. Vaghela N, Gohel S. Medicinal plant‐associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. Journal of Basic Microbiology. 2022; 63(3-4): 308-325. doi: 10.1002/jobm.202200361

28. Vaghela N, Chauhan J, Gohel S. Isolation and Plant Growth Promoting Traits of Actinobacteria Strain KhEc 12. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3559994

29. Majumdar S, Chakraborty U. Optimization of protease production from plant growth promoting Bacillus amyloliquefaciens showing antagonistic activity against phytopathogens. International Journal of Pharma and Bio Science. 2017; 8(2). doi: 10.22376/ijpbs.2017.8.2.b635-642

30. Siqueira JGW, Rodrigues C, Vandenberghe LP de S, et al. Current advances in on-site cellulase production and application on lignocellulosic biomass conversion to biofuels: A review. Biomass and Bioenergy. 2020; 132: 105419. doi: 10.1016/j.biombioe.2019.105419

31. Sadeghi A, Koobaz P, Azimi H, et al. Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. BioControl. 2017; 62(6): 805-819. doi: 10.1007/s10526-017-9838-4

32. Behera BC, Sethi BK, Mishra RR, et al. Microbial cellulases – Diversity & biotechnology with reference to mangrove environment: A review. Journal of Genetic Engineering and Biotechnology. 2017; 15(1): 197-210. doi: 10.1016/j.jgeb.2016.12.001

33. Martínez-Absalón S, Rojas-Solís D, Hernández-León R, et al. Potential use and mode of action of the new strain Bacillus thuringiensis UM96 for the biological control of the grey mould phytopathogen Botrytis cinerea. Biocontrol Science and Technology. 2014; 24(12): 1349-1362. doi: 10.1080/09583157.2014.940846

34. Hao Z, Van Tuinen D, Wipf D, et al. Biocontrol of grapevine aerial and root pathogens by Paenibacillus sp. strain B2 and paenimyxin in vitro and in planta. Biological Control. 2017; 109: 42-50. doi: 10.1016/j.biocontrol.2017.03.004

35. Timmusk S, Paalme V, Pavlicek T, et al. Bacterial Distribution in the Rhizosphere of Wild Barley under Contrasting Microclimates. PLoS ONE. 2011; 6(3): e17968. doi: 10.1371/journal.pone.0017968

36. Wu Y, Zhou J, Li C, et al. Antifungal and plant growth promotion activity of volatile organic compounds produced by Bacillus amyloliquefaciens. Microbiology Open. 2019; 8(8). doi: 10.1002/mbo3.813

37. Vicente-Hernández A, Salgado-Garciglia R, Valencia-Cantero E, et al. Bacillus methylotrophicus M4-96 Stimulates the Growth of Strawberry (Fragaria × ananassa ‘Aromas’) Plants In Vitro and Slows Botrytis cinerea Infection by Two Different Methods of Interaction. Journal of Plant Growth Regulation. 2018; 38(3): 765-777. doi: 10.1007/s00344-018-9888-6

38. Martinez M, Gómez-Cabellos S, Giménez MJ, et al. Plant Proteases: From Key Enzymes in Germination to Allies for Fighting Human Gluten-Related Disorders. Frontiers in Plant Science. 2019; 10. doi: 10.3389/fpls.2019.00721

39. Roberts IN, Caputo C, Criado MV, et al. Senescence‐associated proteases in plants. Physiologia Plantarum. 2012; 145(1): 130-139. doi: 10.1111/j.1399-3054.2012.01574.x

40. Hardoim PR, van Overbeek LS, Berg G, et al. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews. 2015; 79(3): 293-320. doi: 10.1128/mmbr.00050-14

41. Bukhat S, Imran A, Javaid S, et al. Communication of plants with microbial world: Exploring the regulatory networks for PGPR mediated defense signaling. Microbiological Research. 2020; 238: 126486. doi: 10.1016/j.micres.2020.126486

42. Besset-Manzoni Y, Rieusset L, Joly P, et al. Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environmental Science and Pollution Research. 2018; 25(30): 29953-29970. doi: 10.1007/s11356-017-1152-2

43. Chauhan JV, Mathukiya RP, Singh SP, et al. Two steps purification, biochemical characterization, thermodynamics and structure elucidation of thermostable alkaline serine protease from Nocardiopsis alba strain OM-5. International Journal of Biological Macromolecules. 2021; 169: 39-50. doi: 10.1016/j.ijbiomac.2020.12.061

44. Santoyo G, Urtis-Flores CA, Loeza-Lara PD, et al. Rhizosphere Colonization Determinants by Plant Growth-Promoting Rhizobacteria (PGPR). Biology. 2021; 10(6): 475. doi: 10.3390/biology10060475

45. Maddela NR, Golla N, Vengatampalli R. Soil Enzymes. Springer International Publishing; 2017. doi: 10.1007/978-3-319-42655-6

46. Xiao S, Liu L, Wang H, et al. Exogenous melatonin accelerates seed germination in cotton (Gossypium hirsutum L.). PLOS ONE. 2019; 14(6): e0216575. doi: 10.1371/journal.pone.0216575

47. Nonogaki H, Bassel GW, Bewley JD. Germination—Still a mystery. Plant Science. 2010; 179(6): 574-581. doi: 10.1016/j.plantsci.2010.02.010

48. Ma Z, Bykova NV, Igamberdiev AU. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds. The Crop Journal. 2017; 5(6): 459-477. doi: 10.1016/j.cj.2017.08.007

49. Ibrahim EA. Seed priming to alleviate salinity stress in germinating seeds. Journal of Plant Physiology. 2016; 192: 38-46. doi: 10.1016/j.jplph.2015.12.011

50. Hajihashemi S, Skalicky M, Brestic M, et al. Cross-talk between nitric oxide, hydrogen peroxide and calcium in salt-stressed Chenopodium quinoa Willd. At seed germination stage. Plant Physiology and Biochemistry. 2020; 154: 657-664. doi: 10.1016/j.plaphy.2020.07.022

51. Ali Q, Perveen R, El-Esawi MA, et al. Low Doses of Cuscutareflexa Extract Act as Natural Biostimulants to Improve the Germination Vigor, Growth, and Grain Yield of Wheat Grown under Water Stress: Photosynthetic Pigments, Antioxidative Defense Mechanisms, and Nutrient Acquisition. Biomolecules. 2020; 10(9): 1212. doi: 10.3390/biom10091212

52. Muscolo A, Sidari M, Anastasi U, et al. Effect of PEG-induced drought stress on seed germination of four lentil genotypes. Journal of Plant Interactions. 2013; 9(1): 354-363. doi: 10.1080/17429145.2013.835880

53. Sahoo K, Dhal NK, Das R. Production of amylase enzyme from mangrove fungal isolates. African journal of Biotechnology. 2014; 13(46). doi: 10.5897/AJB2013. 13424

54. Vranova V, Rejsek K, Formanek P. Proteolytic activity in soil: A review. Applied Soil Ecology. 2013; 70: 23-32. doi: 10.1016/j.apsoil.2013.04.003

55. Maddela NR, Golla N, Vengatampalli R, et al. Soil Amylase. In: Soil Enzymes. Springer Briefs in Environmental Science. Springer, Cham; 2017. doi: 10.1007/978-3-319-42655-6_7

56. Chauhan J, Gohel S. Exploring plant growth-promoting, biocatalytic, and antimicrobial potential of salt tolerant rhizospheric Georgenia soli strain TSm39 for sustainable agriculture. Brazilian Journal of Microbiology. 2022; 53(4): 1817-1828. doi: 10.1007/s42770-022-00794-2

57. Das SK, Varma A. Role of enzymes in maintaining soil health. In: Soil enzymology. Springer, Berlin, Heidelberg; 2011. pp. 25-42. doi: 10.1007/978-3-642-14225-3_2

58. Phitsuwan P, Laohakunjit N, Kerdchoechuen O, et al. Present and potential applications of cellulases in agriculture, biotechnology, and bioenergy. Folia Microbiologica. 2012; 58(2): 163-176. doi: 10.1007/s12223-012-0184-8

59. Dubois M, Van den Broeck L, Inzé D. The Pivotal Role of Ethylene in Plant Growth. Trends in Plant Science. 2018; 23(4): 311-323. doi: 10.1016/j.tplants.2018.01.003

60. Iqbal N, Khan NA, Ferrante A, et al. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Frontiers in Plant Science. 2017; 08. doi: 10.3389/fpls.2017.00475

61. Giri B, Prasad R, Varma A, et al. Root Biology. Springer International Publishing; 2018. doi: 10.1007/978-3-319-75910-4

62. Gamalero E, Glick BR. Bacterial Modulation of Plant Ethylene Levels. Plant Physiology. 2015; 169(1): 13-22. doi: 10.1104/pp.15.00284

63. Singh RP, Shelke GM, Kumar A, et al. Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Frontiers in Microbiology. 2015; 6. doi: 10.3389/fmicb.2015.00937

64. Meena VS. Role of Rhizospheric Microbes in Soil. Springer Singapore; 2018. doi: 10.1007/978-981-10-8402-7

65. Saikia J, Sarma RK, Dhandia R, et al. Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports. 2018; 8(1). doi: 10.1038/s41598-018-21921-w

66. Ravanbakhsh M, Sasidharan R, Voesenek LACJ, et al. ACC deaminase‐producing rhizosphere bacteria modulate plant responses to flooding. Journal of Ecology. 2017; 105(4): 979-986. doi: 10.1111/1365-2745.12721

67. Pourbabaee AA, Bahmani E, Alikhani HA, et al. Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase.Journal of Agricultural Science and Technology. 2016; 18(3): 855-864.

68. Nascimento FX, Tavares MJ, Rossi MJ, et al. The modulation of leguminous plant ethylene levels by symbiotic rhizobia played a role in the evolution of the nodulation process. Heliyon. 2018; 4(12). doi: 10.1016/j.heliyon.2018. e01068

69. Nascimento FX, Rossi MJ, Soares CRFS, et al. New Insights into 1-Aminocyclopropane-1-Carboxylate (ACC) Deaminase Phylogeny, Evolution and Ecological Significance. PLoS ONE. 2014; 9(6): e99168. doi: 10.1371/journal.pone.0099168

70. Croes S, Weyens N, Janssen J, et al. Bacterial communities associated with Brassica napus L. grown on trace element‐contaminated and non‐contaminated fields: a genotypic and phenotypic comparison. Microbial Biotechnology. 2013; 6(4): 371-384. doi: 10.1111/1751-7915.12057

71. Truyens S, Weyens N, Cuypers A, et al. Changes in the population of seed bacteria of transgenerationally Cd‐exposed Arabidopsis thaliana. Plant Biology. 2012; 15(6): 971-981. doi: 10.1111/j.1438-8677.2012.00711.x

72. SiddikeeMdA, Chauhan Puneet S, Anandham R, et al. Isolation, Characterization, and Use for Plant Growth Promotion Under Salt Stress, of ACC Deaminase-Producing Halotolerant Bacteria Derived from Coastal Soil. Journal of Microbiology and Biotechnology. 2010; 20(11): 1577-1584. doi: 10.4014/jmb.1007.07011

73. Sharma A, Arya SK, Singh J, et al. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnology and Genetic Engineering Reviews. Published online March 1, 2023: 1-31. doi: 10.1080/02648725.2023.2183593

74. Javed S, Hamid R, Khan M, et al. Chitinases: An update. Journal of Pharmacy And Bioallied Sciences. 2013; 5(1): 21. doi: 10.4103/0975-7406.106559

75. Smith RS, Osburn RM. Combined used of Lipo-Chitooligosaccharides and Chitinous compounds for enhanced plant growth and yield. United States patent US 9,253,989, 9 February 2016.

76. Vaghela B, Vashi R, Rajput K, et al. Plant chitinases and their role in plant defense: A comprehensive review. Enzyme and Microbial Technology. 2022; 159: 110055. doi: 10.1016/j.enzmictec.2022.110055

77. Kabir SR, Rahman MdM, Tasnim S, et al. Purification and characterization of a novel chitinase from Trichosanthes dioica seed with antifungal activity. International Journal of Biological Macromolecules. 2016; 84: 62-68. doi: 10.1016/j.ijbiomac.2015.12.006

78. Toufiq N, Tabassum B, Bhatti MU, et al. Improved antifungal activity of barley derived chitinase I gene that overexpress a 32 kDa recombinant chitinase in Escherichia coli host. Brazilian Journal of Microbiology. 2018; 49(2): 414-421. doi: 10.1016/j.bjm.2017.05.007

79. Kashyap P, Deswal R. A novel class I Chitinase from Hippophaerhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway. Plant Science. 2017; 259: 62-70. doi: 10.1016/j.plantsci.2017.03.004

80. Gálusová T, Rybanský Ľ, Mészáros P, et al. Variable responses of soybean chitinases to arsenic and cadmium stress at the whole plant level. Plant Growth Regulation. 2014; 76(2): 147-155. doi: 10.1007/s10725-014-9984-y

81. Giraldo MC, Valent B. Filamentous plant pathogen effectors in action. Nature Reviews Microbiology. 2013; 11(11): 800-814. doi: 10.1038/nrmicro3119

82. Garg G, Singh A, Kaur A, et al. Microbial pectinases: an ecofriendly tool of nature for industries. 3 Biotech. 2016; 6(1). doi: 10.1007/s13205-016-0371-4

83. Singh A, Varghese LM, Battan B, et al. Eco-friendly scouring of ramie fibers using crude xylano-pectinolytic enzymes for textile purpose. Environmental Science and Pollution Research. 2019; 27(6): 6701-6710. doi: 10.1007/s11356-019-07424-9

84. Majethiya V, Gohel S. Isolation and Screening of Extracellular Enzymes Producing Actinobacteria Associated With Sea Weed. SSRN Electronic Journal. Published online 2020. doi: 10.2139/ssrn.3560095

85. Maldonado MC, Cáceres S, Galli E, et al. Regulation of the production of polygalacturonase by Aspergillusniger. Folia Microbiologica. 2002; 47(4): 409-412. doi: 10.1007/bf02818699

86. Tundo S, Paccanaro MC, Elmaghraby I, et al. The Xylanase Inhibitor TAXI-I Increases Plant Resistance to Botrytis cinerea by Inhibiting the BcXyn11a Xylanase Necrotizing Activity. Plants. 2020; 9(5): 601. doi: 10.3390/plants9050601

87. Atalla SMM, Ahmed NE, Awad HM, et al. Statistical optimization of xylanase production, using different agricultural wastes by Aspergillus oryzae MN894021, as a biological control of faba bean root diseases. Egyptian Journal of Biological Pest Control. 2020; 30(1). doi: 10.1186/s41938-020-00323-z

88. Jayamohan NS, Patil SV, Kumudini BS. Seed priming with Pseudomonas putida isolated from rhizosphere triggers innate resistance against Fusarium wilt in tomato through pathogenesis-related protein activation and phenylpropanoid pathway. Pedosphere. 2020; 30(5): 651-660. doi: 10.1016/S1002-0160(20)60027-3

89. Maheshwari R, Bhutani N, Suneja P. Isolation and Characterization of ACC Deaminase Producing Endophytic Bacillus mojavensis PRN2 from Pisum sativum. IRAN J BIOTCH. 2020; 18(2). doi: 10.30498/ijb.2020.137279.2308

90. Pattnaik S, Mohapatra B, Gupta A. Plant Growth-Promoting Microbe Mediated Uptake of Essential Nutrients (Fe, P, K) for Crop Stress Management: Microbe–Soil–Plant Continuum. Frontiers in Agronomy. 2021; 3. doi: 10.3389/fagro.2021.689972

91. Gupta S, Pandey S. ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Frontiers in Microbiology. 2019; 10. doi: 10.3389/fmicb.2019.01506

92. Mun BG, Lee WH, Kang SM, et al. Streptomyces sp. LH 4 promotes plant growth and resistance against Sclerotinia sclerotiorum in cucumber via modulation of enzymatic and defense pathways. Plant and Soil. 2020; 448(1-2): 87-103. doi: 10.1007/s11104-019-04411-4

93. Jasrotia S, Salgotra RK, Sharma M. Efficacy of bioinoculants to control of bacterial and fungal diseases of rice (Oryza sativa L.) in northwestern Himalaya. Brazilian Journal of Microbiology. 2021; 52(2): 687-704. doi: 10.1007/s42770-021-00442-1

94. Bhadrecha P, Bala M, Khasa YP, et al. Hippophaerhamnoides L. rhizobacteria exhibit diversified cellulase and pectinase activities. Physiology and Molecular Biology of Plants. 2020; 26(5): 1075-1085. doi: 10.1007/s12298-020-00778-2

95. Kumar A, Vyas P, Kumar D, et al. Screening and Characterization of Achromobacterxylosoxidans isolated from rhizosphere of Jatropha curcas L. (Energy Crop) for plant-growth-promoting traits. Journal of Advanced Research in Biotechnology. 2018; 3(1): 1-8. doi: 10.15226/2475-4714/3/1/00134

96. Jabiri S, Legrifi I, Benhammou M, et al. Screening of Rhizobacterial Isolates from Apple Rhizosphere for Their Biocontrol and Plant Growth Promotion Activity. Applied Microbiology. 2023; 3(3): 948-967. doi: 10.3390/applmicrobiol3030065

97. Chowhan LB, Imran Mir M, Sabra MA, et al. Plant growth promoting and antagonistic traits of bacteria isolated from forest soil samples. Iranian Journal of Microbiology. Published online April 17, 2023. doi: 10.18502/ijm.v15i2.12480

98. Agnihotri P, Mitra AK. Understanding the impact of global climate change on abiotic stress in plants and the supportive role of PGPR. In: Abiotic Stress in Plants-Adaptations to Climate Change. IntechOpen; 2023.doi: 10.5772/intechopen.10961

99. Agnihotri P, Maitra M, Mitra A. Isolation, characterization and identification of an as(v)-resistant plant growth promoting rhizobacterium associated with the rhizosphere of Azolla Microphylla. Journal of microbiology, biotechnology and food sciences. 2022; 12(2): e4728. doi: 10.55251/jmbfs.4728

100. Fadiji AE, Santoyo G, Yadav AN, et al. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Frontiers in Microbiology. 2022; 13. doi: 10.3389/fmicb.2022.962427

101. Dehghani Bidgoli R, Azarnezhad N, Akhbari M, et al. Salinity stress and PGPR effects on essential oil changes in Rosmarinus officinalis L. Agriculture & Food Security. 2019; 8(1). doi: 10.1186/s40066-018-0246-5

102. Li Y, You X, Tang Z, et al. Isolation and identification of plant growth‐promoting rhizobacteria from tall fescue rhizosphere and their functions under salt stress. Physiologia Plantarum. 2022; 174(6). doi: 10.1111/ppl.13817

103. Jochum MD, McWilliams KL, Borrego EJ, et al. Bioprospecting Plant Growth-Promoting Rhizobacteria That Mitigate Drought Stress in Grasses. Frontiers in Microbiology. 2019; 10. doi: 10.3389/fmicb.2019.02106

104. Batool T, Ali S, Seleiman MF, et al. Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports. 2020; 10(1). doi: 10.1038/s41598-020-73489-z

105. AlZubi AA, Galyna K. Artificial Intelligence and Internet of Things for Sustainable Farming and Smart Agriculture. IEEE Access. 2023; 11: 78686-78692. doi: 10.1109/access.2023.3298215

106. Leventon J, Schaal T, Velten S, et al. Collaboration or fragmentation? Biodiversity management through the common agricultural policy. Land Use Policy. 2017; 64: 1-12. doi: 10.1016/j.landusepol.2017.02.009

107. Timofti E, Popa D, Kielbasa B. Comparative analysis of the land fragmentation and its impact on the farm management in some EU countries and Moldova. Scientific Papers: Management, Economic Engineering in Agriculture & Rural Development. 2015; 15(4).

108. Bhagat PR, Naz F, Magda R. Artificial intelligence solutions enabling sustainable agriculture: A bibliometric analysis. PLOS ONE. 2022; 17(6): e0268989. doi: 10.1371/journal.pone.0268989

109. Aleksandrova M. Technologies and IoT have the potential to transform agriculture in many aspects. Namely, there are 5 ways IoT can improve agriculture. Eastern Peak. 2019; 5.

110. Muluneh MG. Impact of climate change on biodiversity and food security: a global perspective—a review article. Agriculture & Food Security. 2021; 10(1). doi: 10.1186/s40066-021-00318-5

111. Khaniya B, Gunathilake MB, Rathnayake U. Ecosystem-Based Adaptation for the Impact of Climate Change and Variation in the Water Management Sector of Sri Lanka. Wang X, ed. Mathematical Problems in Engineering. 2021; 2021: 1-10. doi: 10.1155/2021/8821329

112. Chathuranika IM, Gunathilake MB, Azamathulla HMd, et al. Evaluation of Future Stream flow in the Upper Part of the Nilwala River Basin (Sri Lanka) under Climate Change. Hydrology. 2022; 9(3): 48. doi: 10.3390/hydrology9030048

113. Chathuranika I, Khaniya B, Neupane K, et al. Implementation of water-saving agro-technologies and irrigation methods in agriculture of Uzbekistan on a large scale as an urgent issue. Sustainable Water Resources Management. 2022; 8(5). doi: 10.1007/s40899-022-00746-6

114. Habib-ur-Rahman M, Ahmad A, Raza A, et al. Impact of climate change on agricultural production; Issues, challenges, and opportunities in Asia. Frontiers in Plant Science. 2022; 13. doi: 10.3389/fpls.2022.925548




DOI: https://doi.org/10.24294/th.v7i2.4902

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by/4.0/

This site is licensed under a Creative Commons Attribution 4.0 International License.