Seed priming and GA3 field application enhanced growth, yield and postharvest quality of okra

Saroj Dhakal, Jahidul Hassan, Md. Mijanur Rahman Rajib, Totan Kumar Ghosh, Joydeb Gomasta, Md. Sanaullah Biswas, Yukio Ozaki, Shayla Hedayet Shanta, Md. Mamunur Rahman

Article ID: 3578
Vol 6, Issue 2, 2023

VIEWS - 884 (Abstract) 95 (PDF)

Abstract


Highly nutritive and antioxidants-enriched okra (Abelmoschus esculentus) gets sub-optimal field yield due to the irregular germination coupled with non-synchronized harvests. Hence, the research aimed at assessing the combined impact of seed priming and field-level gibberellic acid (GA3) foliar spray on the yield and post-harvest quality of okra. The lab studies were conducted using a complete randomized design (CRD), while the field trials were performed following a factorial randomized complete block design (RCBD) with three replications. Okra seeds were subjected to ten different priming methods to assess their impact on seed germination and seeding vigor. In the premier step, okra seeds were subjected to ten different priming methods, like hydro priming for 6, 12, and 18 h, halo priming with 3% NaCl at 35 ℃, 45 ℃, and 60 ℃, acid priming with 80% H2SO4 for 2.5, 5, and 10 min. Based on the observation, hydro priming for 12 h exhibited the best germination rate (90%), followed by halo seed priming at 60 ℃ and acid priming for 5 min. Furthermore, the halo priming at 60 ℃ demonstrated the greatest seedling vigor index (1965), whereas acid priming for 5 min resulted in favorable outcomes in terms of early emergence in 2.66 days. In addition, varying concentrations of GA3 (0, 100, 200, and 300 ppm) were also administered to the best three primed seedlings for evaluating their field performance. The findings indicated that applying GA3 at a concentration of 300 ppm to seedlings raised through acid priming (80% H2SO4 for 5 min) resulted in improved leaf length, reduced time to flowering (first and 50%) and harvest, increased pod diameter, individual pod weight, and yield per plant (735.16 g). Additionally, the treatment involving GA3 at 300 ppm with halo priming (3% NaCl) at 60 ℃ exhibited the longest shelf life (21 days) of okra with the lowest levels of rotting (6.73%) and color change (1.12) in the polyethylene storage condition.


Keywords


germination index; plant growth regulator; postharvest quality; seed priming; vegetables

Full Text:

PDF


References


1. Rahman A, Salma U, Gomasta J, et al. Degree and frequency of nitrogen amendments influencing the off-season okra production in the semi-arid north-western Bangladesh. Plant Archives 2023; 23(2): 93–103. doi: 10.51470/plantarchives.2023.v23.no2.016

2. Pandey A, Nivedhitha S, Sagar V, et al. Notes on diversity distribution and systematics study of Abelmoschus tuberculatus Pal & Har B. Singh: A close wild relative of okra from India. Indian Journal of Plant Genetic Resources 2020; 33(1): 77. doi: 10.5958/0976-1926.2020.00011.x

3. Akintoye HA, Adebayo AG, Aina OO. Growth and yield response of okra intercropped with live mulches. Asian Journal of Agricultural Research 2011; 5(2): 146–153. doi: 10.3923/ajar.2011.146.153

4. Lim TK. Edible Medicinal and Non-Medicinal Plants. Springer; 2012. pp. 846–848. doi: 10.1007/978-94-007-4053-2_97

5. Jain S, Jain M, Jain V, et al. Hypertrophic scar and pregnancy. Health Care 2013; 1(1): 15. doi: 10.12966/hc.5.4.2013

6. Maramag RP. Diuretic potential of Capsicum frutescens Linn., Corchorus oliturius Linn., and Abelmoschus esculentus Linn. Asian Journal of Nature & Applied Sciences 2013; 2(1): 60–69.

7. Benchasri S. Screening for yellow vein mosaic virus resistance and yield loss of okra under field conditions in Southern Thailand. Journal of Animal & Plant Sciences 2011; 12(3): 1676–1686.

8. Adebawo OO, Salau BA, Adeyanju MM, et al. Fruits and vegetables moderate blood pressure, fibrinogen concentration and plasma viscosity in Nigerian hypertensives. African Journal of Food, Agriculture, Nutrition and Development 2007; 7(6). doi: 10.18697/ajfand.17.1905

9. Doymaz İ. Drying characteristics and kinetics of okra. Journal of Food Engineering 2005; 69(3): 275–279. doi: 10.1016/j.jfoodeng.2004.08.019

10. Government of Nepal. Statistical information on Nepalese agriculture. Available online: https://moald.gov.np/wp-content/uploads/2022/04/STATISTICAL-INFORMATION-ON-NEPALESE-AGRICULTURE-2072-73.pdf (accessed on 25 December 2023).

11. Bangladesh Bureau of Statistics, BBS. Yearbook of agricultural statistics-2020. Available online: https://drive.google.com/file/d/1UspiEI_SZz4qCPZUlRWE-dP3Ww68ZeL5/view?pli=1 (accessed on 25 December 2023).

12. Tania SS, Rhaman MS, Hossain MdM. Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Tropical Plant Research 2020; 7(1): 86–93. doi: 10.22271/tpr.2020.v7.i1.012

13. Chuanren D, Bochu W, Wanqian L, et al. Effect of chemical and physical factors to improve the germination rate of Echinacea angustifolia seeds. Colloids and Surfaces B: Biointerfaces 2004; 37(3–4): 101–105. doi: 10.1016/j.colsurfb.2004.07.003

14. Sher A, Sarwar T, Nawaz A, et al. Methods of seed priming. In: Hasanuzzaman M, Fotopoulos V (editors). Priming and Pretreatment of Seeds and Seedlings. Springer; 2019. pp. 1–10. doi: 10.1007/978-981-13-8625-1_1

15. Black M. Seed Technology and Its Biological Basis. Sheffield Academic Pr; 2000. 352p.

16. Basra SMA, Zia MN, Mehmood T, et al. Comparison of different invigoration techniques in wheat (Triticum aestivum L.) seeds. Pakistan Journal of Arid Agriculture (Pakistan) 2002; 5(2): 11–16.

17. Vaktabhai CK, Kumar S. Seedling invigouration by halo-priming in tomato against salt stress. Journal of Pharmacognosy and Phytochemistry 2017; 6(6): 716–722.

18. Selim MM. Introduction to the integrated nutrient management strategies and their contribution to yield and soil properties. International Journal of Agronomy 2020; 2020: 1–14. doi: 10.1155/2020/2821678

19. Egnime KK, Outéndé T, Atalaèsso B, et al. Influence of reasoned organic and inorganic fertilization on okra (Abelmoschus esculentus) growth, productivity, and profitability on degraded sandy soil in South Togo. Discover Agriculture 2023; 1(1). doi: 10.1007/s44279-023-00009-8

20. Das BC, Das TK. Efficacy of GA3, NAA and ethrel on sex expression in pumpkin (Cucurbita moschata Poir) cv. Guamala Local. The Orissa Journal of Horticulture 1995; 23(1&2): 87–91.

21. Ray T, Gomasta J, Hassan J, et al. Foliar application of chitosan and plant probiotic bacteria influencing the growth, productivity and bulb storage life of onion. Australian Journal of Crop Science 2023; 17(10): 776–788. doi: 10.21475/ajcs.23.17.10.p3888

22. Gomasta J, Hassan J, Sultana H, et al. Tomato response evaluation through fertilization and PGRs application under temperature differentiation in late winter. Available online: https://www.biorxiv.org/content/10.1101/2023.08.04.552040v1.full.pdf+html (accessed on 25 December 2023).

23. Hassan J, Miyajima I. Induction of parthenocarpy in pointed gourd (Trichosanthes dioica Roxb.) by application of plant growth regulators. Journal of Horticulture and Plant Research 2019; 8: 12–21. doi: 10.18052/www.scipress.com/jhpr.8.12

24. Singh D, Vadodaria JR, Morwal BR. Effect of GA3 and NAA on yield and quality of okra (Abelmoschus esculentus L). Journal of Krishi Vigyan 2017; 6(1): 65. doi: 10.5958/2349-4433.2017.00052.6

25. Perkins-Veazie P, Collins JK. Cultivar, packaging, and storage temperature differences in postharvest shelf life of okra. HortTechnology 1992; 2(3): 350–352. doi: 10.21273/horttech.2.3.350

26. Vijayakumar S, Rajadurai KR, Pandiyaraj P. Effect of plant growth regulators on flower quality, yield and postharvest shelf life of China aster (Callistephus chinensis L. nees.) cv. local. International Journal of Agricultural Science and Research 2017; 7(2): 297–304.

27. Lers A, Jiang W, Lomaniec E, et al. Gibberellic acid and CO2 additive effect in retarding postharvest senescence of parsley. Journal of Food Science 1998; 63(1): 66–68. doi: 10.1111/j.1365-2621.1998.tb15677.x

28. Kuppusamy N, Ranganathan U. Storage potential of primed seeds of okra (‘Abelmoschus esculentus’) and beet root (‘Beta vulgaris’). Australian Journal of Crop Science 2014; 8(9): 1290–1297.

29. Farooq M. Influence of high and low temperature treatments on seed germination and seedling vigor of coarse and fine rice. International Rice Research Notes 2004; 29: 69–71.

30. Bradbeer JW. Seed viability and vigour. In: Seed Dormancy and Germination. Springer; 1988. pp. 95–109. doi: 10.1007/978-1-4684-7747-4_8

31. Wanjau C. Sodium chloride priming enhances germination of stinging nettle (Urtica dioca L.) seeds. World Journal of Innovative Research 2020; 8(4): 1-3.

32. Gamboa‐deBuen A, Cruz‐Ortega R, Martínez‐Barajas E, et al. Natural priming as an important metabolic event in the life history of Wigandia urens (Hydrophyllaceae) seeds. Physiologia Plantarum 2006; 128(3): 520–530. doi: 10.1111/j.1399-3054.2006.00783.x

33. Farooq M, Basra SMA, Khalid M, et al. Nutrient homeostasis, metabolism of reserves, and seedling vigor as affected by seed priming in coarse rice. Canadian Journal of Botany 2006; 84(8): 1196–1202. doi: 10.1139/b06-088

34. Varier A, Vari AK, Dadlani M. The sub-cellular basis of seed priming. Current Science 2010; 99(4): 450–456.

35. Mondani F, Jalilian A, Olfati A. Efficiency of chemical and mechanical priming in breaking seed dormancy and germination traits of malva (Malva neglcta). Iranian Journal of Seed Research 2018; 5(1): 55–70. doi: 10.29252/yujs.5.1.55

36. Sivritepe N, Sivritepe HO, Eris A. The effects of NaCl priming on salt tolerance in melon seedlings grown under saline conditions. Scientia Horticulturae 2003; 97(3–4): 229–237. doi: 10.1016/s0304-4238(02)00198-x

37. Olmez Z, Yahyaoglu Z, Ucler AO. Effects of H2SO4, KNO3 and GA3 treatments on germination of caper (Capparis ovata Desf.) seeds. Pakistan Journal of Biological Sciences 2004; 7(6): 879–882. doi: 10.3923/pjbs.2004.879.882

38. Mabhaudhi T. Responses of Maize (Zea mays L.) Landraces to Water Stress Compared with Commercial Hybrids [PhD thesis]. University of Kwazulu; 2009.

39. Hassanpouraghdam MB, Pardaz JE, Akhtar NF. The effect of osmo-priming on germination and seedling growth of Brassica napus L. under salinity conditions. Journal of Food, Agriculture and Environment 2009; 7(2): 620–622.

40. Mohammadi GR. The effect of seed priming on plant traits of late-spring seeded soybean (Glycine max L.). American-Eurasian Journal of Agricultural and Environmental Science 2009; 5(3): 322–326.

41. Bakare SO, Ukwungwu MN. On-farm evaluation of seed priming technology in Nigeria. African Journal of General Agriculture 2021; 5(2).

42. Türkmen Ö, Şensoy S, Erdal İ. Effect of potassium on emergence and seedling growth of cucumber grown in salty conditions. University Journal of Agricultural Sciences 2000; 10(1): 113–117.

43. Ayyub CM, Manan A, Pervez MA, et al. Foliar feeding with Gibberellic acid (GA3): A strategy for enhanced growth and yield of okra (Abelmoschus esculentus L. Moench.). African Journal of Agricultural Research 2013; 8(25): 3299–3302. doi: 10.5897/AJAR12.409

44. Shahid MR, Amjad M, Ziaf K, et al. Growth, yield and seed production of okra as influenced by different growth regulators. Pakistan Journal of Agricultural Sciences 2013; 50(3): 387–392.

45. Ahmed K, Uddin MS, Tabassum T, et al. Gibberellic acid (GA3) panacea: Morphological features of spinach (Spinacia oleracea L.). International Journal of Business, Social and Scientific Research 2020; 8(1): 64–71.

46. Rajappa MR, Padma M, Prabhakar BN, et al. Effect of growth regulators and pruning on growth and flowering of okra (Abelmoschus esculentus L. Moench). International Journal of Current Microbiology and Applied Sciences 2020; 9(12): 330–343. doi: 10.20546/ijcmas.2020.912.043

47. Jaymala S, Singh BK, Singh AK, et al. Effect of foliar spray of GA3 and IBA on plant characters and yield of okra [Abelmoschus esculentus (L.) Moench]. Environment and Ecology 2012; 30(4): 1351–1353.

48. Baraskar TV, Gawande PP, Kayande NV, et al. Effect of plant growth regulators on growth parameters of okra (Abelmoschus esculentus L. Moench). International Journal of Chemical Studies 2018; 6(6): 165–68.

49. Dogra S, Pandey RK, Bhat DJ. Influence of gibberellic acid and plant geometry on growth, flowering and corm production in gladiolus (Gladiolus grandiflorus) under Jammu agroclimate. International Journal of Pharma and Bio Sciences 2012; 3(4): 1083–1090.

50. Kumar A, Kumar J, Mohan B, et al. Studies on the effect of plant growth regulators on growth, flowering and yield of African marigold (Tagetes erecta L.) cv. Pusa Narangi Gainda. Annals of Horticulture 2012; 5(1): 47–52.

51. Prajapati S, Jamkar T, Singh OP, et al. Plant growth regulators in vegetable production: An overview. Plant Archives 2015; 15(2): 619–626.

52. Nego J, Dechassa N, Dessalegne L. Effect of seed priming with potassium nitrate on bulb yield and seed quality of onion (Allium cepa L.) under rift valley condition, central Ethiopia. International Journal of Crop Science and Technology 2015; 1(2): 1–12.

53. Al-Sanoussi AJ. Effect of seed presoaking in gibberellic acid on cucumber (Cucumis sativus L.) plant growth, flowering, and yield. Journal of Scientific Agriculture 1970; 3: 9–13. doi: 10.25081/jsa.2019.v3.5278

54. Alenazi MM. Improvement of Okra (Abelmoschus Esculentus) Growth, Yield and Quality by Using Plant Growth Regulators In-vivo and In-vitro Conditions [PhD thesis]. University of Malaya; 2011.

55. Tomar IS, Ramgiry SR. Effect of growth regulator on yield and yield attributes in tomato (Lycopersicon esculentum Mill). Advances in Plant Sciences 1997; 10: 31–32.

56. Hossain MAE. Studies on the Effect of Parachlorophenoxy Acetic Acid and Gibberellic Acid on the Production of Tomato [PhD thesis]. Bangladesh Agricultural University; 1974. pp. 25–26.

57. Khatoon R, Moniruzzaman M. Effect of foliar spray of GA3 and NAA on sex expression and yield of bitter gourd. Bangladesh Journal of Agricultural Research 2019; 44(2): 281–290. doi: 10.3329/bjar.v44i2.41818

58. Kadi AS, Asati KP, Barche S, Tulasigeri RG. Effect of different plant growth regulators on growth, yield and quality parameters in cucumber (Cucumis sativus L.) under polyhouse condition. International Journal of Current Microbiology and Applied Sciences 2018; 7(04): 3339–3352. doi: 10.20546/ijcmas.2018.704.378

59. Sams CE. Preharvest factors affecting postharvest texture. Postharvest Biology and Technology 1999; 15(3): 249–254. doi: 10.1016/s0925-5214(98)00098-2

60. Islam MK, Khan MZH, Sarkar MAR, et al. Post harvest quality of mango (Mangifera Indica L.) fruit affected by different levels of gibberellic acid during storage. Malaysian Journal of Analytical Sciences 2013; 17(3).

61. Ozkaya O, Dundar O, Kuden A. Effect of preharvest gibberellic acid treatments on postharvest quality of sweet cherry. Journal of Food Agriculture and Environment 2006; 4(1): 189–191.

62. Siddiqui MW, Longkumer M, Ahmad MdS, et al. Postharvest biology and technology of sapota: A concise review. Acta Physiologiae Plantarum 2014; 36(12): 3115–3122. doi: 10.1007/s11738-014-1696-4

63. Fellows PJ. Food Processing Technology: Principles and Practice, 4th ed (Portuguese). Artmed; 2018. 944p.

64. Khanam S, Gomasta J, Rahman MM, et al. Chitosan and probiotic bacteria promotion of yield, post-harvest qualities, antioxidant attributes and shelf life of broccoli heads. Agriculture and Natural Resources 2023; 57(4). doi: 10.34044/j.anres.2023.57.4.15

65. Amir M, Chaturvedi OP, Tripathi VK. Effect of pre-harvest application of gibberellic acid and calcium nitrate on the fruit maturity and storage quality of Kinnow Mandarin. Farm Science Journal 2003; 12(2): 148–149.

66. Rokaya PR, Baral DR, Gautam DM, et al. Effect of pre-harvest application of gibberellic acid on fruit quality and shelf life of mandarin (Citrus reticulata Blanco). American Journal of Plant Sciences 2016; 7(7): 1033–1039. doi: 10.4236/ajps.2016.77098

67. Jawandha SK, Mahajan BVC, Gill PS. Effect of pre-harvest treatments on the cellulase activity and quality of ber fruit under cold storage conditions. Notulae Scientia Biologicae 2009; 1(1): 88–91. doi: 10.15835/nsb113536




DOI: https://doi.org/10.24294/th.v6i2.3578

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.