A review of gluten and sorghum as a gluten free substitute
313 (Abstract) 209 (PDF)
Abstract
The review explores the role of gluten in food products, its associated health issues, and the growing market for gluten-free alternatives. Gluten, a protein in wheat, barley, and rye, is widely used in the food industry for its binding and stabilizing properties. Increasing gluten intolerance, especially in those with celiac disease, has boosted demand for gluten-free options like sorghum. Sorghum, a gluten-free grain, offers high protein and fiber content but also contains antinutritional factors like tannins, phytates, and protease inhibitors. Various processing techniques, such as dehulling, soaking, fermentation, and heating, have been developed to address these factors. Future trends in sorghum are expected to focus on innovative processing methods to enhance its nutritional value. This review also provides a detailed examination of gluten, its functions in foods, health concerns, gluten-free products, sorghum-based foods, antinutritional properties, processing technologies, and future opportunities.
Keywords
Full Text:
PDFReferences
1. Szabłowska E, Tańska M. Acorn flour properties depending on the production method and laboratory baking test results: A review. Comprehensive Reviews in Food Science and Food Safety 2021; 20(1): 980–1008. doi: 10.1111/1541-4337.12683
2. Pruimboom L, de Punder K. The opioid effects of gluten exorphins: Asymptomatic celiac disease. Journal of Health, Population and Nutrition 2015; 33: 24. doi: 10.1186/s41043-015-0032-y
3. Catassi C, Bai JC, Bonaz B, et al. Non-celiac gluten sensitivity: The new frontier of gluten related disorders. Nutrients 2013; 5(10): 3839–3853. doi: 10.3390/NU5103839
4. Gaesser G, Angadi SS. Gluten-free diet: Imprudent dietary advice for the general population? Journal of the Academy of Nutrition and Dietetics 2012; 112(9): 1330–1333. doi: 10.1016/j.jand.2012.06.009
5. Gómez M. Gluten-free bakery products: Ingredients and processes. Advances in Food and Nutrition Research 2022; 99: 189–238. doi: 10.1016/BS.AFNR.2021.11.005
6. Matsumura H, Shiomi K, Yamamoto A, et al. Hybrid rubisco with complete replacement of rice rubisco small subunits by sorghum counterparts confers C4 plant-like high catalytic activity. Molecular Plant 2020; 13(11): 1570–1581. doi: 10.1016/J.MOLP.2020.08.012
7. Osborne CP, Freckleton RP. Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences 2009; 276(1663): 1753–1760. doi: 10.1098/RSPB.2008.1762
8. Yali Kebbede W. Genetic variability and divergence in Sorghum: Review. International Journal of Research Studies in Agricultural Sciences 2020; 6(5): 11–20. doi: 10.20431/2454-6224.0605002
9. Khoddami A, Messina V, Vadabalija Venkata K, et al. Sorghum in foods: Functionality and potential in innovative products. Critical Reviews in Food Science and Nutrition 2023; 63(9): 1170–1186. doi: 10.1080/10408398.2021.1960793
10. Visarada KBRS, Aruna C. Sorghum: A bundle of opportunities in the 21st century. In: Aruna C, Visarada KBRS, Venkatesh Bhat B, Tonapi VA (editors). Breeding Sorghum for Diverse End Uses. Woodhead Publishing; 2019. pp. 1–14. doi: 10.1016/B978-0-08-101879-8.00001-2
11. Xu S. Development and Characterization of Peptide Antioxidants from Sorghum Proteins [Master’s thesis]. Kansas State University; 2018. 250p.
12. Peters PJ, Jenks MA, Rich PJ, et al. Mutagenesis, selection, and allelic analysis of epicuticular wax mutants in sorghum. Crop Science 2009; 49(4): 1250–1258. doi: 10.2135/CROPSCI2008.08.0461
13. Ahmed SO, Abdalla AWH, Inoue T, et al. Nutritional quality of grains of sorghum cultivar grown under different levels of micronutrients fertilization. Food Chemistry 2014; 159: 374–380. doi: 10.1016/J.FOODCHEM.2014.03.033
14. Dicko MH, Gruppen H, Traoré AS, et al. Sorghum grain as human food in Africa: Relevance of content of starch and amylase activities. African Journal of Biotechnology 2016; 5(5): 384–395.
15. Taylor JRN, Dewar J. Developments in sorghum food technologies. Advances in Food and Nutrition Research 2001; 43: 217–264. doi: 10.1016/S1043-4526(01)43006-3
16. Zhang J, Liu M, Zhao Y, et al. Recent developments in fermented cereals on nutritional constituents and potential health benefits. Foods 2022; 11(15): 2243. doi: 10.3390/FOODS11152243
17. Catassi C, Elli L, Bonaz B, et al. Diagnosis of non-celiac gluten sensitivity (NCGS): The Salerno experts’ criteria. Nutrients 2015; 7(6): 4966–4977. doi: 10.3390/NU7064966
18. Branlard G, Dardevet M, Saccomano R, et al. Genetic diversity of wheat storage proteins and bread wheat quality. Euphytica 2001; 119: 59–67. doi: 10.1023/A:1017586220359
19. Sharma R, Gupta A, Sharma S. Flour modification for the development of gluten free bread. In: Mir SA, Shah MA, Hamdani AM (editors). Gluten-Free Bread Technology. Springer, Cham; 2021. pp. 199–226. doi: 10.1007/978-3-030-73898-3_12
20. Balakireva AV, Zamyatnin AA. Properties of gluten intolerance: Gluten structure, evolution, pathogenicity and detoxification capabilities. Nutrients 2016; 8(10): 644. doi: 10.3390/NU8100644
21. Banu I, Aprodu I. Assessing the performance of different grains in gluten-free bread applications. Applied Sciences 2020; 10(24): 8772. doi: 10.3390/APP10248772
22. Smulders MJM, van de Wiel CCM, van den Broeck HC, et al. Oats in healthy gluten-free and regular diets: A perspective. Food Research International 2018; 110: 3–10. doi: 10.1016/J.FOODRES.2017.11.031
23. Gasparre N, van den Berg M, Oosterlinck F, Sein A. High-moisture shear processes: Molecular changes of wheat gluten and potential plant-based proteins for its replacement. Molecules 2022; 27(18): 5855. doi: 10.3390/molecules27185855
24. Bascuñán KA, Vespa MC, Araya M. Celiac disease: Understanding the gluten-free diet. European Journal of Nutrition 2017; 56: 449–459. doi: 10.1007/S00394-016-1238-5
25. Skendi A, Papageorgiou M, Varzakas T. High protein substitutes for gluten in gluten-free bread. Foods 2021; 10(9): 1997. doi: 10.3390/FOODS10091997
26. Volta U, Caio G, De Giorgio R, et al. Non-celiac gluten sensitivity: A work-in-progress entity in the spectrum of wheat-related disorders. Best Practice & Research Clinical Gastroenterology 2015; 29(3): 477–491. doi: 10.1016/J.BPG.2015.04.006
27. Troncone R, Jabri B. Coeliac disease and gluten sensitivity. Journal of Internal Medicine 2011; 269(6): 582–590. doi: 10.1111/j.1365-2796.2011.02385.x
28. Stein RA, Katz DE. Celiac disease. In: Dodd CER, Aldsworth T, Stein RA, et al. (editors). Foodborne Diseases, 3rd ed. Academic Press; 2017. pp. 475–526. doi: 10.1016/B978-0-12-385007-2.00024-3
29. Gumienna M, Górna B. Gluten hypersensitivities and their impact on the production of gluten-free beer. European Food Research and Technology 2020; 246: 2147–2160. doi: 10.1007/S00217-020-03579-9
30. Pavan D, Anaghasree, Satish P, et al. Gluten-free diet: Challenges faced by celiac disease patients. The Pharma Innovation Journal 2022; 11(6): 2371–2382.
31. Scherf KA, Koehler P, Wieser H. Gluten and wheat sensitivities—An overview. Journal of Cereal Science 2016; 67: 2–11. doi: 10.1016/J.JCS.2015.07.008
32. Marston K, Khouryieh H, Aramouni F. Effect of heat treatment of sorghum flour on the functional properties of gluten-free bread and cake. LWT–Food Science and Technology 2016; 65: 637–644. doi: 10.1016/J.LWT.2015.08.063
33. Mansueto P, Seidita A, D’Alcamo A, Carroccio A. Non-celiac gluten sensitivity: Literature review. Journal of the American College of Nutrition 2014; 33(1): 39–54. doi: 10.1080/07315724.2014.869996
34. Gibson PR, Varney J, Malakar S, Muir JG. Food components and irritable bowel syndrome. Gastroenterology 2015; 148(6): 1158–1174. doi: 10.1053/J.GASTRO.2015.02.005
35. Biesiekierski JR, Iven J. Non-coeliac gluten sensitivity: Piecing the puzzle together. United European Gastroenterology Journal 2015; 3(2): 160–165. doi: 10.1177/2050640615578388
36. Catassi C, Kryszak D, Bhatti B, et al. Natural history of celiac disease autoimmunity in a USA cohort followed since 1974. Annals of Medicine 2010; 42(7): 530–538. doi: 10.3109/07853890.2010.514285
37. Prandi B, Mantovani P, Galaverna G, Sforza S. Genetic and environmental factors affecting pathogenicity of wheat as related to celiac disease. Journal of Cereal Science 2014; 59(1): 62–69. doi: 10.1016/j.jcs.2013.10.006
38. Niland B, Cash BD. Health benefits and adverse effects of a gluten-free diet in non-celiac disease patients. Gastroenterology & Hepatology 2018; 14(2): 82–91.
39. Chakrabarty S, Kravcov N, Schaffasz A, et al. Genetic architecture of novel sources for reproductive cold tolerance in sorghum. Frontiers in Plant Science 2021; 12. doi: 10.3389/FPLS.2021.772177
40. Al-Toma A, Volta U, Auricchio R, et al. European Society for the Study of Coeliac Disease (ESsCD) guideline for coeliac disease and other gluten-related disorders. United European Gastroenterology Journal 2019; 7(5): 583–613. doi: 10.1177/2050640619844125
41. Møller MS, Svensson B. Structure, function and protein engineering of cereal-type inhibitors acting on amylolytic enzymes. Frontiers in Molecular Biosciences 2022; 9. doi: 10.3389/FMOLB.2022.868568
42. Rustgi S, Shewry P, Brouns F, et al. Wheat seed proteins: Factors influencing their content, composition, and technological properties, and strategies to reduce adverse reactions. Comprehensive Reviews in Food Science and Food Safety 2019; 18(6): 1751–1769. doi: 10.1111/1541-4337.12493
43. Villalobos A, Arguedas M, Escalante D, et al. Cryopreservation of sorghum seeds modifies germination and seedling growth but not field performance of adult plants. Journal of Applied Botany and Food Quality 2019; 92: 94–99. doi: 10.5073/JABFQ.2019.092.013
44. Gibson PR, Skodje GI, Lundin KEA. Non-coeliac gluten sensitivity. Journal of Gastroenterology and Hepatology 2017; 32(S1): 86–89. doi: 10.1111/jgh.13705
45. Chu NHS, Yao CK, Tan VPY. Food therapy in Sinosphere Asia. Journal of Clinical Gastroenterology 2018; 52(2): 105–113. doi: 10.1097/MCG.0000000000000932
46. Hattersley S, Chan CH. Labelling of allergenic foods of concern in Europe. In: Albert J (editor). Innovations in Food Labelling. Woodhead Publishing; 2010. pp. 59–74. doi: 10.1533/9781845697594.59
47. Manfredi A, Mattarozzi M, Giannetto M, Careri M. Multiplex liquid chromatography-tandem mass spectrometry for the detection of wheat, oat, barley and rye prolamins towards the assessment of gluten-free product safety. Analytica Chimica Acta 2015; 895: 62–70. doi: 10.1016/J.ACA.2015.09.008
48. Punia H, Tokas J, Malik A, et al. Characterization of phenolic compounds and antioxidant activity in sorghum [Sorghum bicolor (L.) Moench] grains. Cereal Research Communications 2021; 49: 343–353. doi: 10.1007/s42976-020-00118-w
49. Mohta S, Rajput MS, Ahuja V, Makharia GK. Emergence of celiac disease and gluten-related disorders in Asia. Journal of Neurogastroenterology and Motility 2021; 27(3): 337–346. doi: 10.5056/jnm20140
50. Patel S. Cereal bran fortified-functional foods for obesity and diabetes management: Triumphs, hurdles and possibilities. Journal of Functional Foods 2015; 14: 255–269. doi: 10.1016/J.JFF.2015.02.010
51. Anyango JO, de Kock HL, Taylor JRN. Evaluation of the functional quality of cowpea-fortified traditional African sorghum foods using instrumental and descriptive sensory analysis. LWT–Food Science and Technology 2011; 44(10): 2126–2133. doi: 10.1016/J.LWT.2011.07.010
52. Cappelli A, Oliva N, Cini E. A systematic review of gluten-free dough and bread: Dough rheology, bread characteristics, and improvement strategies. Applied Sciences 2020; 10(18): 6559. doi: 10.3390/APP10186559
53. Wu JHY, Neal B, Trevena H, et al. Are gluten-free foods healthier than non-gluten-free foods? An evaluation of supermarket products in Australia. British Journal of Nutrition 2015; 114(3): 448–454. doi: 10.1017/S0007114515002056
54. Missbach B, Schwingshackl L, Billmann A, et al. Gluten-free food database: The nutritional quality and cost of packaged gluten-free foods. PeerJ 2015; 3: e1337. doi: 10.7717/peerj.1337
55. Hussein Abdelmegiud M, El-Soukkary FAH, EL-Naggar EA, Abdelsalam RR. Physico-chemical, functional and antioxidant evaluation of some gluten-free flours formulas compared with available commercial formula. Asian Journal of Applied Chemistry Research 2022; 11(1): 33–42. doi: 10.9734/ajacr/2022/v11i130245
56. Taylor JRN, Duodu KG. Sorghum and millets: Grain-quality characteristics and management of quality requirements. In: Wrigley C, Batey I, Miskelly D (editors). Cereal Grains: Assessing and Managing Quality, 2nd ed. Woodhead Publishing; 2017. pp. 317–351. doi: 10.1016/B978-0-08-100719-8.00013-9
57. Kassaye AY, Shao G, Wang X, et al. Impact of climate change on the staple food crops yield in Ethiopia: Implications for food security. Theoretical and Applied Climatology 2021; 145: 327–343. doi: 10.1007/S00704-021-03635-8
58. Papageorgiou M, Skendi A. Introduction to cereal processing and by-products. In: Galanakis CM (editor). Sustainable Recovery and Reutilization of Cereal Processing By-Products. Woodhead Publishing; 2018. pp. 1–25. doi: 10.1016/B978-0-08-102162-0.00001-0
59. Arslan M, Rakha A, Zou X, Mahmood MA. Complimenting gluten free bakery products with dietary fiber: Opportunities and constraints. Trends in Food Science & Technology 2019; 83: 194–202. doi: 10.1016/J.TIFS.2018.11.011
60. Aller EEJG, Abete I, Astrup A, et al. Starches, sugars and obesity. Nutrients 2011; 3(3): 341–369. doi: 10.3390/nu3030341
61. Taylor JRN, Schober TJ, Bean SR. Novel food and non-food uses for sorghum and millets. Journal of Cereal Science 2006; 44(3): 252–271. doi: 10.1016/j.jcs.2006.06.009
62. Liu L, Herald TJ, Wang D, et al. Characterization of sorghum grain and evaluation of sorghum flour in a Chinese egg noodle system. Journal of Cereal Science 2012; 55(1): 31–36. doi: 10.1016/J.JCS.2011.09.007
63. Pontieri P, Mamone G, De Caro S, et al. Sorghum, a healthy and gluten-free food for celiac patients as demonstrated by genome, biochemical, and immunochemical analyses. Journal of Agricultural and Food Chemistry 2013; 61(10): 2565–2571. doi: 10.1021/jf304882k
64. Giuberti G, Gallo A, Cerioli C, et al. Cooking quality and starch digestibility of gluten free pasta using new bean flour. Food Chemistry 2015; 175: 43–49. doi: 10.1016/j.foodchem.2014.11.127
65. Suhendro EL, Kunetz CF, McDonough CM, et al. Cooking characteristics and quality of noodles from food sorghum. Cereal Chemistry 2000; 77(2): 96–100. doi: 10.1094/CCHEM.2000.77.2.96
66. Min TZ, Stephens MW, Kumar P, Chudleigh RA. Renal complications of diabetes. British Medical Bulletin 2012; 104(1): 113–127. doi: 10.1093/bmb/lds030
67. Lee HJ, Anderson Z, Ryu D. Gluten contamination in foods labeled as “gluten free” in the United States. Journal of Food Protection 2014; 77(10): 1830–1834. doi: 10.4315/0362-028X.JFP-14-149
68. Gong L, Cao W, Chi H, et al. Whole cereal grains and potential health effects: Involvement of the gut microbiota. Food Research International 2018; 103: 84–102. doi: 10.1016/j.foodres.2017.10.025
69. Gamage HKAH, Tetu SG, Chong RWW, et al. Cereal products derived from wheat, sorghum, rice and oats alter the infant gut microbiota in vitro. Scientific Reports 2017; 7: 14312. doi: 10.1038/s41598-017-14707-z
70. Xu J, Wang W, Zhao Y. Phenolic compounds in whole grain sorghum and their health benefits. Foods 2021; 10(8): 1921. doi: 10.3390/foods10081921
71. Onyango C, Mutungi C, Unbehend G, Lindhauer MG. Modification of gluten-free sorghum batter and bread using maize, potato, cassava or rice starch. LWT–Food Science and Technology 2011; 44(3): 681–686. doi: 10.1016/j.lwt.2010.09.006
72. Gunawan S, Dwitasari I, Rahmawati N, et al. Effect of process production on antinutritional, nutrition, and physicochemical properties of modified sorghum flour. Arabian Journal of Chemistry 2022; 15(10): 104134. doi: 10.1016/j.arabjc.2022.104134
73. Demirkesen I, Mert B, Sumnu G, Sahin S. Rheological properties of gluten-free bread formulations. Journal of Food Engineering 2010; 96(2): 295–303. doi: 10.1016/j.jfoodeng.2009.08.004
74. Beatriz Sabbatini S, Diego Sanchez H, de la Torre M, Alberto Osella C. Design of a premix for making gluten free noodles. International Journal of Nutrition and Food Sciences 2014; 3(5): 488–492. doi: 10.11648/j.ijnfs.20140305.29
75. Duodu KG, Dowell FE. Sorghum and millets: Quality management systems. In: Taylor JRN, Duodu KG (editors). Sorghum and Millets: Chemistry, Technology, and Nutritional Attributes, 2nd ed. Woodhead Publishing and AACC International Press; 2018. pp. 421–442. doi: 10.1016/B978-0-12-811527-5.00014-9
76. Soares S, Brandão E, Guerreiro C, et al. Tannins in food: Insights into the molecular perception of astringency and bitter taste. Molecules 2020; 25(11): 2590. doi: 10.3390/molecules25112590
77. Rashwan AK, Yones HA, Karim N, et al. Potential processing technologies for developing sorghum-based food products: An update and comprehensive review. Trends in Food Science & Technology 2021; 110: 168–182. doi: 10.1016/j.tifs.2021.01.087
78. Soetan KO, Oyewole OE. The need for adequate processing to reduce the anti-nutritional factors in plants used as human foods and animal feeds: A review. African Journal of Food Science 2009; 3(9): 223–232.
79. Sathe GB, Mandal S. Fermented products of India and its implication: A review. Asian Journal of Dairy and Food Research 2016; 35(1): 1–9. doi: 10.18805/ajdfr.v35i1.9244
80. Aruna C, Suguna M, Visarada KBRS, et al. Identification of sorghum genotypes suitable for specific end uses: Semolina recovery and popping. Journal of Cereal Science 2020; 93: 102955. doi: 10.1016/j.jcs.2020.102955
81. Cayres CA, Ramírez Ascheri JL, Peixoto Gimenes Couto MA, et al. Consumers’ acceptance of optimized gluten-free sorghum-based cakes and their drivers of liking and disliking. Journal of Cereal Science 2020; 93: 102938. doi: 10.1016/j.jcs.2020.102938
82. Wrigley C. Assessing and managing quality at all stages of the grain chain. In: Wrigley C, Batey I, Miskelly D (editors). Cereal Grains: Assessing and Managing Quality, 2nd ed. Woodhead Publishing; 2017. pp. 3–25. doi: 10.1016/B978-0-08-100719-8.00001-2
83. Olojede AO, Sanni AI, Banwo K. Effect of legume addition on the physiochemical and sensorial attributes of sorghum-based sourdough bread. LWT 2020; 118: 108769. doi: 10.1016/j.lwt.2019.108769
84. Anderson JW, Smith BM, Gustafson NJ. Health benefits and practical aspects of high-fiber diets. The American Journal of Clinical Nutrition 1994; 59(5): 1242S–1247S. doi: 10.1093/AJCN/59.5.1242S
85. Delimont NM, Fiorentino NM, Kimmel KA, et al. Long-term dose-response condensed tannin supplementation does not affect iron status or bioavailability. Current Developments in Nutrition 2017; 1(10): e001081. doi: 10.3945/cdn.117.001081
86. Lin, Y., Yu, C., Ma, Z., et al. Effects of yeast culture supplementation in wheat–rice–based diet on growth performance, meat quality, and gut microbiota of growing–finishing pigs. Animals 2022; 12(17): 2177. doi: 10.3390/ani12172177
87. Abdel Rahman IE, Osman M. Effect of sorghum type (Sorghum bicolor) and traditional fermentation on tannins and phytic acid contents and trypsin inhibitor activity. Journal of Food, Agriculture and Environment 2011; 9(3&4): 163–166. doi: 10.1234/4.2011.2244
88. Al-Mamary M, Al-Habori M, Al-Aghbari A, Al-Obeidi A. In vivo effects of dietary sorghum tannins on rabbit digestive enzymes and mineral absorption. Nutrition Research 2001; 21(10): 1393–1401. doi: 10.1016/S0271-5317(01)00334-7
89. Tokpohozin SE, Fischer S, Sacher B, Becker T. β-D-Glucosidase as “key enzyme” for sorghum cyanogenic glucoside (dhurrin) removal and beer bioflavouring. Food and Chemical Toxicology 2016; 97: 217–223. doi: 10.1016/j.fct.2016.09.015
90. Dlamini NR, Taylor JRN, Rooney LW. The effect of sorghum type and processing on the antioxidant properties of African sorghum-based foods. Food Chemistry 2007; 105(4): 1412–1419. doi: 10.1016/j.foodchem.2007.05.017
91. Hotz C, Gibson RS. Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. The Journal of Nutrition 2007; 137(4): 1097–1100. doi: 10.1093/jn/137.4.1097
92. Ratnavathi CV. Sorghum processing and utilization. In: Ratnavathi CV, Patil JV, Chavan UD (editors). Sorghum Biochemistry: An Industrial Perspective. Academic Press; 2016. pp. 311–327. doi: 10.1016/B978-0-12-803157-5.00006-X
93. Pelembe LAM, Erasmus C, Taylor JRN. Development of a protein-rich composite sorghum–cowpea instant porridge by extrusion cooking process. LWT–Food Science and Technology 2002; 35(2): 120–127. doi: 10.1006/fstl.2001.0812
94. Sruthi NU, Rao PS. Effect of processing on storage stability of millet flour: A review. Trends in Food Science & Technology 2021; 112: 58–74. doi: 10.1016/j.tifs.2021.03.043
95. Nanje Gowda NA, Siliveru K, Vara Prasad PV, et al. Modern processing of Indian millets: A perspective on changes in nutritional properties. Foods 2022; 11(4): 499. doi: 10.3390/foods11040499
96. Birania S, Rohilla P, Kumar R, Kumar N. Post harvest processing of millets: A review on value added products. International Journal of Chemical Studies 2020; 8(1): 1824–1829. doi: 10.22271/chemi.2020.v8.i1aa.8528
97. Malleshi NG, Desikachar HSR. Studies on comparative malting characteristics of some tropical cereals and millets. Journal of the Institute of Brewing 1986; 92(2): 174–176. doi: 10.1002/j.2050-0416.1986.tb04393.x
98. Young R, Haidara M, Rooney LW, Waniska RD. Parboiled sorghum: Development of a novel decorticated product. Journal of Cereal Science 1990; 11(3): 277–289. doi: 10.1016/S0733-5210(09)80172-0
99. Arvind Pandhi S, Paul V. Technological evaluation of milling operations. In: Sharma GK, Semwal AD, Yadav DK (editors). Advances in Cereals Processing Technologies, 1st ed. CRC Press; 2021. pp. 131–152. doi: 10.1201/9781003261124-7
100. Misra NN, Tiwari BK. Biscuits. In: Zhou W, Hui YH, De Leyn I, et al. (editors). Bakery Products Science and Technology, 2nd ed. John Wiley & Sons, Ltd.; 2014. pp. 585–601. doi: 10.1002/9781118792001.ch33
101. Zhou W, Hui YH, De Leyn I, et al. (editors). Bakery Products Science and Technology, 2nd ed. John Wiley & Sons, Ltd.; 2014. pp. 1–761. doi: 10.1002/9781118792001
102. Rocha-Villarreal V, Serna-Saldivar SO, García-Lara S. Effects of parboiling and other hydrothermal treatments on the physical, functional, and nutritional properties of rice and other cereals. Cereal Chemistry 2018; 95(1): 79–91. doi: 10.1002/cche.10010
103. Bora P, Ragaee S, Marcone M. Effect of parboiling on decortication yield of millet grains and phenolic acids and in vitro digestibility of selected millet products. Food Chemistry 2019; 274: 718–725. doi: 10.1016/j.foodchem.2018.09.010
104. Kuzayli MV, Cowan JW, Sabry ZI. Nutritive value of middle eastern foodstuffs. II.—Composition of pulses, seeds, nuts and cereal products of Lebanon. Journal of the Science of Food and Agriculture 1966; 17(2): 82–84. doi: 10.1002/jsfa.2740170208
105. Puri S, Dhillon B, Sodhi NS. Effect of degree of milling (DOM) on overall quality of rice—A review. International Journal of Advanced Biotechnology and Research 2014; 5(3): 474–489.
106. Dayakar Rao B, Kiranmai E. Novel processes, value chain, and products for food, feed, and industrial uses. In: Tonapi VA, Talwar HS, Are AK, et al. (editors). Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World. Springer, Singapore; 2020. pp. 859–887. doi: 10.1007/978-981-15-8249-3_34
107. Rissman J, Bataille C, Masanet E, et al. Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070. Applied Energy 2020; 266: 114848. doi: 10.1016/j.apenergy.2020.114848
108. Desta KT, Choi YM, Shin MJ, et al. Comprehensive evaluation of nutritional components, bioactive metabolites, and antioxidant activities in diverse sorghum (Sorghum bicolor (L.) Moench) landraces. Food Research International 2023; 173(P2): 113390. doi: 10.1016/j.foodres.2023.113390
109. Xiong Y, Zhang P, Luo J, et al. Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. Journal of Cereal Science 2019; 85: 6–14. doi: 10.1016/i.jcs.2018.10.012
110. Ocheme Boniface O, Esther Gladys M. Effect of alkaline soaking and cooking on the proximate, functional and some anti-nutritional properties of sorghum flour. AU Journal of Technology 2011; 14(3): 210–216.
111. Afify AEMMR, El-Beltagi HS, El-Salam SMA, Omran AA. Effect of soaking, cooking, germination and fermentation processing on proximate analysis and mineral content of three white sorghum varieties (Sorghum bicolor L. Moench). Notulae Botanicae Horti Agrobotanici Cluj-Napoca 2012; 40(2): 92–98. doi: 10.15835/nbha4027930
112. Kyarisiima CC, Okot MW, Svihus B. Use of wood ash in the treatment of high tannin sorghum for poultry feeding. South African Journal of Animal Science 2004; 34(2): 110–115. doi: 10.4314/sajas.v34i2.3814
113. Kyarisiima CC, Okot MW, Svihus B. Use of wood ash extract and germination to improve the feeding value of Ugandan Sekedo sorghum (Sorghum bicolor) for broiler chicks. Animal Feed Science and Technology 2005; 120(1–2): 67–77. doi: 10.1016/j.anifeedsci.2004.10.008
114. Benhur DR, Bhargavi G, Kalpana K, et al. Development and standardization of sorghum pasta using extrusion technology. Journal of Food Science and Technology 2015; 52: 6828–6833. doi: 10.1007/S13197-015-1801-8
115. Afify AEMMR, El-Beltagi HS, Abd El-Salam SM, Omran AA. Biochemical changes in phenols, flavonoids, tannins, vitamin E, β–carotene and antioxidant activity during soaking of three white sorghum varieties. Asian Pacific Journal of Tropical Biomedicine 2012; 2(3): 203–209. doi: 10.1016/S2221-1691(12)60042-2
116. Ocheme O, Adedeji E, Lawal G, Zakari M. Effect of germination on functional properties and degree of starch gelatinization of sorghum flour. Journal of Food Research 2015; 4(2). doi: 10.5539/jfr.v4n2p159
117. Chove BE, Mamiro PS. Effect of germination and autoclaving of sprouted finger millet and kidney beans on cyanide content. Tanzania Journal of Health Research 2010; 12(4): 252–256. doi: 10.4314/thrb.v12i4.51262
118. Osman MA. Changes in sorghum enzyme inhibitors, phytic acid, tannins and in vitro protein digestibility occurring during Khamir (local bread) fermentation. Food Chemistry 2004; 88(1): 129–134. https://doi.org/10.1016/J.FOODCHEM.2003.12.038
119. de Morais Cardoso L, Montini TA, Pinheiro SS, et al. Effects of processing with dry heat and wet heat on the antioxidant profile of sorghum. Food Chemistry 2014; 152: 210–217. doi: 10.1016/j.foodchem.2013.11.106
120. Aleminew A, Tadesse T, Merene Y, et al. Effect of integrated technologies on the productivity of maize, sorghum and pearl millet crops for improving resilience capacity to climate change effects in the dry lands of Eastern Amhara, Ethiopia. Cogent Food & Agriculture 2020; 6(1). doi: 10.1080/23311932.2020.1728084
121. Cabrera-Ramírez AH, Luzardo-Ocampo I, Ramírez-Jiménez AK, et al. Effect of the nixtamalization process on the protein bioaccessibility of white and red sorghum flours during in vitro gastrointestinal digestion. Food Research International 2020; 134: 109234. doi: 10.1016/j.foodres.2020.109234
122. Annapure US, Kalaivendan RGT, Mishra A, Eazhumalai G. Processing technologies of nutri-cereals. In: Sharma R, Nanda V, Sharma S (editors). Nutri-Cereals, 1st ed. CRC Press; 2023. pp. 305–324. doi: 10.1201/9781003251279-14
123. Darmayanti RF, Amini HW, Rizkiana MF, et al. Lignocellulosic material from main indonesian plantation commodity as the feedstock for fermentable sugar in biofuel production. ARPN Journal of Engineering and Applied Sciences 2019; 14(20): 3524–3534.
124. Castro-Campos FG, Cabrera-Ramírez AH, Morales-Sánchez E, et al. Impact of the popping process on the structural and thermal properties of sorghum grains (Sorghum bicolor L. Moench). Food Chemistry 2021; 348: 129092. doi: 10.1016/j.foodchem.2021.129092
125. Luzardo-Ocampo I, Ramírez-Jiménez AK, Cabrera-Ramírez AH, et al. Impact of cooking and nixtamalization on the bioaccessibility and antioxidant capacity of phenolic compounds from two sorghum varieties. Food Chemistry 2020; 309: 125684. doi: 10.1016/j.foodchem.2019.125684
126. Hassan AB, Osman GAM, Rushdi MAH, et al. Effect of gamma irradiation on the nutritional quality of maize cultivars (Zea mays) and sorghum (Sorghum bicolor) grains. Pakistan Journal of Nutrition 2009; 8(2): 167–171.
127. Shawrang P, Sadeghi AA, Behgar M, et al. Study of chemical compositions, anti-nutritional contents and digestibility of electron beam irradiated sorghum grains. Food Chemistry 2011; 125(2): 376–379. doi: 10.1016/j.foodchem.2010.09.010
128. Nidumolu U, Lim-Camacho L, Gaillard E, et al. Linking climate forecasts to rural livelihoods: Mapping decisions, information networks and value chains. Weather and Climate Extremes 2020; 27: 100174. doi: 10.1016/j.wace.2018.06.001
DOI: https://doi.org/10.24294/th.v6i2.2840
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.