Effects on the plantain proliferation in two propagation environments brought by corm size and benzylaminopurine

Jorge Espinoza González, Antonio Bustamante González, Galo Cedeño García

Article ID: 1833
Vol 5, Issue 2, 2022

VIEWS - 4176 (Abstract) 408 (PDF)

Abstract


Banana macropropagation in a thermal chamber is an economical technology, effective as a phytosanitary cleaning method, and efficient to enhance seedling production. The objective of this work was to evaluate the effects of corm size (CS) and benzylaminopurine (BAP) on plantain cv. Barraganete seedling proliferation in two propagation environments (PE). The treatments consisted of two levels of BAP (with and without BAP), three CS (2 ± 0.5, 4 ± 0.5 and 6 ± 0.5 kg) and two PE (thermal chamber and raised bed). The variables evaluated were sprouting time (days), multiplication rate (MT) per unit (seedlings per corm) and area (seedlings per m2). Sprouting time was significantly influenced (p < 0.05) by the PE, where the thermal chamber advanced shoot emergence by 12 days, with respect to the raised bed. MT of seedlings per corm and m2, were significantly influenced (p < 0.05) by BAP × AP and TC × AP interactions, where the highest seedling production per corm occurred inside thermal chamber with BAP and 6 ± 0.5 kg corms, while seedling production per m2 was higher with 2 ± 0.5 kg corms under the same thermal chamber conditions and with BAP. The main effects results reported that with BAP there were 30 and 31% increases in MT per corm and per m2, respectively, relative to the treatment without BAP. Within the thermal chamber the MT per corm and per m2 increased by 44% relative to the raised bed. Regarding the effect of CS, larger corms achieved higher individual MT, while smaller corms achieved higher MT per area. The use of a thermal chamber and BAP is recommended for mass production of banana seedlings through macropropagation.


Keywords


Musa AAB; Macropropagation; Rhizome; Thermal Chamber; Phytoregulator

Full Text:

PDF


References


1. Beltrón C, Sánchez A, Ortiz M. El fortalecimiento de la comercialización del plátano mediante formas asociativas. caso de estudio del cantón El Carmen de la provincia de Manabí (Spanish) [Strengthening banana marketing through associative forms. Case study of El Carmen canton in the province of Manabí. Caribbean]. Revista Caribeña de Ciencias Sociales 2018.

2. MAG (Ministerio de Agricultura y Ganadería). Ficha técnica del cultivo de plátano (Musa AAB) (Spanish) [Technical sheet of the banana crop (Musa AAB)] [Internet]. Sistema de Información Pública Agropecuaria; 2020. Available from: https://n9.cl/5d6fp.

3. Njau N, Mwangi M, Gathu R, et al. Banana weevil (Cosmopolites sordidus) reduces availability of corms for seedling production through macropropagation technology. Journal of Animal and Plant Sciences 2011; 12(1): 1537–1542.

4. Jacobsen K, Omondi BA, Almekinders C, et al. Seed degeneration of banana planting materials: Strategies for improved farmer access to healthy seed. Plant Pathology 2019; 68(2): 207–228. doi. org/10.1111/ppa.12958.

5. Bangata BK Mobambo M Kasongo D, et al. Assessment of the prolific potential of six cultivars of banana tree (cv. AAB, ABB, and AAA) by macropropagation in Democratic Republic of Congo. Journal of Applied Biosciences 2018; 127(1); 12770–12784. doi: 10.4314/jab.v127i1.3.

6. Baganta BM, Ngbenelo N, Mobambo K. Evaluation du potentiel de proliferation d’e×plants de différentes dimensions de bananier plantain (Musa sp. cv. AAB) par la macropropagation en conditions semi-contrôlées (Spanish) [Evaluation of the proliferation potential of explants of different sizes of plantain (Musa sp. cv. AAB) by macropropagation under semi-controlled conditions]. Revue Africaine d’Environnement et d’Agriculture 2019; 2(2); 25–31.

7. Galán V, Rangel A, Lopez J, et al. Banana propagation: Traditional techniques. New technologies and innovations. Revista Brasileira de Frutiiultura 2018; 40(4): e-574. doi: 10.1590/0100-29452018574.

8. Álvarez E, Ceballos G, Gañán L, et al. Producción de material de siembra limpio en el manejo de las enfermedades limitantes del plátano (Spanish) [Production of clean planting material in the management of limiting diseases of plantain]. Palmira: Centro Internacional de Agricultura Tropical (CIAT), Publicación CIAT; 2013. p. 16.

9. Cedeño GA, Soplín H, Helfgott S, et al. Application of bioregulators for banana cv. Williams macro-propagation under thermal chamber. Agronomía Mesoamericana 2016; 27(2): 397–408. doi: 10.15517/am.v27i2.24390.

10. Ntamwira J, Sivirihauma C, Ocimati W, et al. Macropropagation of banana/plantain using selected local materials: A cost-effective way of mass propagation of planting materials for resource-poor households. European Journal of Horticultural Science 2017; 82(1): 38–53. doi: 10.17660/eJHS.2017/82.1.5.

11. Lassois L, Lepoivre P, Swennen R, et al. Thermotherapy, chemotherapy, and meristem culture in Banana. In: Lambardi M, Ozudogru E, Jain S (editors). Protocols for micropropagation of selected economically-important horticultural plants. Totowa, NJ: Humana Press; 2012. p. 419–433.

12. Panattoni A, Luvisi A, Triolo E. Elimination of viruses in plants: twenty years of progress. Spanish Journal of Agricultural Research 2013; (1): 173–188. doi: 10.5424/sjar/2013111-3201.

13. Rodríguez D, Ceballos G, Mejia J, et al. Construcción, implementación y estandarización de cámara térmica para producción de semilla de plátano libre enfermedades (Spanish) [Construction, implementation and standardization of a thermal chamber for the production of disease-free plantain seeds]. Cali, Colombia: Centro Internacional de Agricultura Tropical (CIAT); 2013.

14. Koné T, Koné M, Teixeira J, et al. Effect of substrate type and bulb size on in vivo production of seedlings in three cultivars of plantain (Musa spp.). The African Journal of Plant Science and Biotechnology 2011; 5(1): 50–55.

15. Koné T, Soumahoro A, Coulibaly Z, et al. Effects of substrates, weight and physiological stage of suckers on massive propagation of plantain (Musa paradisiaca L.). International Journal of Research–GRANTHAALAYAH 2016; 4(1): 1–13. doi: 10.29121/granthaalayah.v4.i1.2016.2837.

16. Deo B, Keshari B, Pradhan B. In vitro propagation of popular banana cultivar (Musa spp. Cv. Patakpura). Bangladesh Journal of Agricultural Research 2019; 44(4): 641–648. doi: 10.3329/bjar.v44i4.45699

17. Opata J, Melichar PF, Hegele M, et al. Macropropagation of plantain (Musa AAB): Responses to hormonal and mechanical corm manipulation. Fruits 2020; 75(3): 123–129. doi: 10.17660/th2020/75.2.3.

18. Thiemele D, Issali A, Traore S, et al. Macropropagation of plantain (Musa spp.) Cultivars PITA 3, FHIA 21, ORISHELE and CORNE 1: Effect of benzylaminopurine (BAP) concentration. Journal of Plant Development 2015; 22: 31–39.

19. Ramirez J, Batoon GA, Sacayanan AS. Macropropagation of saba banana using misting system and different plant growth enhancers. MAYFEB Journal of Agricultural Science 2016; 4: 28–33.

20. Coyne D, Wasukira A, Dusabe J, et al. Boiling water treatment: A simple, rapid and effective technique for nematode and banana weevil management in banana and plantain (Musa spp.) planting material. Crop Protection 2010; 29(12): 1478–1482. doi: 10.1016/j.cropro.2010.08.008.

21. Taji A, Williams R. Use of in vitro breeding strategies in the development of Australian native plants. Acta Horticulturae 2005; 683: 87–93. doi. org/10.17660/ActaHortic.2005.683.7.

22. Smith R. Plant tissue culture. 3rd edition. San Diego: Academic Press Elsevier; 2013. p. 45–51.

23. Shi W, Villar-Salvador P, Li G, et al. Acorn size is more important than nursery fertilization for outplanting performance of Quercus variabilis container seedlings. Annals of Forest Science 2019; 76(1): 1–12. doi: 10.1007/s13595-018-0785-8.

24. Ashango T. Effect of corm and corm pieces on regeneration and multiplication of enset (Ensete ventricosum (Welw.) Cheesman). International Journal of Research-GRANTHAALAYAH 2017; 5(5): 281–299.

25. López J, Cedeño G, Cedeño GA. Effects of benzylaminopurine and type of sprouts on the production and quality of plantain seedlings way macropropagation. Revista ALFA 2021; 5(15); 386–399. doi: 10.33996/revistaalfa.v5i15.124.

26. Cheng Z, Wang L, Sun W, et al. Pattern of auxin and cytokinin responses for shoot meristem induction results from the regulation of cytokinin biosynthesis by AUXIN RESPONSE FACTOR3. Plant Physiology 2013; 161(1): 240–251. doi: 10.1104/pp.112.203166.

27. Su Y, Zhang X. The hormonal control of regeneration in plants. Current Topics in Developmental Biology 2014; 108: 35–69. doi: 10.1016/B978-0-12-12-391498-9.00010-3.

28. Pereira G, Santaella M, Alves L, et al. Concentrations of 6-Benzylaminopurine (BAP) in micropropagation of banana ‘Farta Velhaco’(AAB). Comunicata Scientiae 2018; 9(1): 58–63. doi: 10.14295/CS.v9i1.2034.

29. Shin J, Bae S, Seo PJ. De novo shoot organogenesis during plant regeneration. Journal of Experimental Botany 2020; 71(1): 63–72. doi: 10.1093/jxb/erz395.

30. Dhaval P, Keara F. Temperature-regulation of plant architecture. Plant Signaling & Behavior 2009; 4(7): 577–579. doi: 10.4161/psb.4.7.8849.

31. Hatfield JL, Prueger JH. Temperature extremes: Effect on plant growth and development. Weather and climate extremes 2015; 10: 4–10. doi: 10.1016/j.wace.2015.08.001.




DOI: https://doi.org/10.24294/th.v5i2.1833

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.