Commercial classification and physicochemical characterization of beets from a no-till vegetable planting system under different densities of corn stover

Bruna Regina de Oliveira Pacheco, Jessica Rauana Makoski, Cláudia Simone Madruga Lima, Gabriela Gerhardt da Rosa

Article ID: 1829
Vol 5, Issue 2, 2022

VIEWS - 2099 (Abstract)

Abstract


The cultivation of sugar beet (Beta vulgaris L.) for table or horticultural purposes is largely carried out in the conventional way which is characterized by intense mechanization causing soil degradation and high labor costs. New cultivation techniques are being employed in the production of vegetables aiming to ensure improvements in environmental and economic conditions, such as the no-till farming system. Thus, the objective of this work was to evaluate the vegetable classification and physicochemical characteristics of beets from different corn planting densities. The experiment was conducted in the period from October 2018 to June 2019 in the municipality of Nova Laranjeiras (PR). Corn was used as a cover plant and the vegetable used was beet cultivar Early Wonder Tall Top. The experimental design used was in interspersed blocks in unifactorial scheme (corn densities 40, 60, 80, 100 thousand plants/ha and control) with four blocks, with plots 3.60 m long and 1.20 m wide. The parameters evaluated 60 days after planting were: commercial classification (class, group, subgroup, category), length, diameter, mass, pulp firmness, soluble solids, titratable acidity, pH and ratio, phenolic compounds. Of which the variables that were not significant at 0.5 probability were length, category (defects), firmness, subgroup (flesh color), soluble solids and phenolic compounds. It is concluded that high densities of corn as mulch for SPDH of sugar beet crop negatively affect the grade and physicochemical characterization of the products.


Keywords


Beta vulgares L.; SPDH; Zea mays; Vegetable; Cover crop

Full Text:

PDF


References


1. Dias MA, Aquino LA, Dias DCFS, et al. Physiological quality of beet (Beta vulgaris L.) seeds under osmotic conditioning and treatments with fungicide. Revista Brasileira de Sementes 2009; 31(2): 188–194.

2. Van Der Vinne J, Braz LT, Breda Júnior JM. Produção de cultivares de beterraba em sistema de semeadura direto na palha (Portuguese) [Production of sugar beet cultivars under no-till sowing system]. In: Congresso brasileiro de olericultura, Goiânia. Goiânia: CD ROM; 2006.

3. Salvador CA. Olericultura—Análise da conjuntura agropecuária (Portuguese) [Olericulture—Analysis of the agricultural situation]. Curitiba: SEAB; 2017.

4. SEAB, Secretaria da Agricultura e Abastecimento. Valor bruto da produção rural Paranaense (Portuguese) [Gross value of rural production in Paraná]. Curitiba: SEAB; 2017.

5. Linhares PCF, de Sousa AJP, Pereira MFS, et al. Sugar beet (Beta vulgaris L.) fertilized with different rates of Copernicia prunifera incorporation soil. Horticultura Brasileira 2012; 30(2): S5186–S5194.

6. Lima AP, Müller Júnior V, Zanella M, et al. O sistema de plantio direto de hortaliças (SPDH) como ferramenta de transição agroecológica (Portuguese) [The no-till vegetable gardening system (SPDH) as a tool for agroecological transition]. In: VI Congresso Latinoamericano de Agroecologia, Brasília. Brasília: Cadernos de Agroecologia; 2017.

7. EMATER. A Agricultura Familiar e a Olericultura no Paraná. 1st ed. Curitiba: EMATER; 2016.

8. Nespoli A, Seabra Junior S, Dallacort R, et al. Intercropping of lettuce and green ear corn on soil live cover and mulch coverage in no-tillage system. Horticultura Brasileira 2017; 35(3): 453–457.

9. Factor TL, Lima JRS, Purquerio LFV, et al. Beet production in no-tillage system under different straws. Horticultura Brasileira 2010; 28(2): 1861–1866.

10. Stefanoski DC, Santos GG, Marchão LR, et al. Soil use and management and its impact on physical quality. Revista Brasileira de Engenharia Agrícola e Ambiental 2013; 17(12): 1301–1309.

11. Fayad JA, Comin JJ, Kurtz C, et al. Sistema de Plantio Direto de Hortaliças (SPDH): O cultivo da cebola (Portuguese) [Horticultural no-till system (SPDH): Onion cultivation]. 146th ed. Florianópolis: EPAGRI Didactic Bulletin; 2018.

12. Costa MEB. Cultivo de beterrabas em sistema de plantio direto de hortaliças (Portuguese) [Cultivation of beets in no-till vegetable planting system]. Florianópolis: Universidade Federal de Santa Catarina; 2014.

13. Mendonça VZ, De Mello LMM, Andreotti M, et al. Liberação de nutrientes da palhada de forrageiras consorciadas com milho e sucessão com soja (Portuguese) [Nutrient release from forage stubble intercropped with corn and succession with soybean]. Revista Brasileira de Ciência do Solo 2014; 39(1): 183–193.

14. Souza JL, Pereira VA. Species for mulch for no-tillage in organic system in the winter and summer at highland region. Horticultura Brasileira 2011; 29: 4223–4230.

15. Tivelli SW, Factor TL, Teramoto JRS, et al. Beterraba: Do plantio à comercialização (Portuguese) [Beetroot: From planting to marketing]. Brasília: IAC; 2011.

16. Santos HG, Jacomine PKT, Anjos LHC, et al. Sistema brasileiro de classificação de solos (Portuguese) [Brazilian system of soil classification]. 2nd ed. Rio de Janeiro: Embrapa Solos; 2006.

17. Kõeppen W. Climatologia: Con un estúdio de los climas de la tierra (Portuguese) [Climatology: With a study of the climates of the earth]. 1st ed. Mexico: Fondo de Cultura Económica; 1948.

18. Caviglione JH, Kiihl LRB, Caramori PH, et al. Cartas climáticas do Paraná (Portuguese) [Climate charts of Paraná]. 1st ed. Londrina: IAPAR; 2000.

19. IAL—Instituto Adolfo Lutz. Métodos físico-químicos para análise de alimentos (Portuguese) [Physical-chemical methods for food analysis]. 1st ed. São Paulo: IAL; 2008.

20. Bucic-Kojic A, Planinic M, Tomas S, et al. Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. Journal of Food Engineering 2007; 81(1): 236–242.

21. Dornemann GM. Comparação de métodos para determinação de açúcares redutores e não-redutores (Portuguese) [Comparison of methods for determination of reducing and non-reducing sugars] [BSc thesis]. Porto Alegre: Federal University of Rio Grande do Sul; 2016.

22. Tivelli SW, Factor TL, Lima JRS, et al. Semeadura direta e transplante influem na produtividade e qualidade de beterraba cultivada em plantio direto (Portuguese) [Do direct seeding and transplanting influence the productivity and quality of beets grown in no-till?]. Horticultura Brasileir 2009; 27: 77–85.

23. Santos CC, Souza IDF, Alves LWR. Corn residues effects on Cofee (Coffea arabica l.) plants growth. Ciência e Agrotecnologia 2003; 27(5).

24. Guimarães MA, Silva DJH, Peternelli LA, et al. Photoassimilate distribution in tomato plants with and without clipping of the first cluster. Journal of Biosciences 2009; 25(5): 83–92.

25. Tullio JA, Otto RF, Boer A, et al. Sugar beet cultivation in protected and natural environments in the summer season. Revista Brasileira de Engenharia Agrícola e Ambiental 2013; 17(10): 1074–1079.

26. Tivelli SW, Kano C, Purquerio LFV, et al. Okra performance intercropped with small size and erect green manure in two production systems. Horticultura Brasileira 2013; 31: 483–488.

27. Rodriguez DP, Tonietto SM, Piesanti SR, et al. Radish production (Raphanus sativus L.) in the residual organic lettuce. Revista da 14ª Jornada de Pós-Graduação e Pesquisa-Congrega Urcamp 2017; 14: 2329–2340.

28. Calonego JC, Gil FC, Rocco VF, et al. Persistence and nutrient release from maize, Brachiaria and labe-labe straw. Bioscience Journal 2012; 28(5): 770–781.

29. Coutinho PWR. Desempenho de cultivares, produtividade e qualidade de beterraba em sistemas de cultivo (Portuguese) [Cultivar performance, productivity and quality of sugar beet in cropping systems] [Master’s thesis]. Cascavel: Universidade Estadual do Oeste do Paraná; 2016.

30. Oliveira LCP, Farias AKN, Baldus T, et al. Análise físicoquímica das características da beterraba e resíduos in natura, cozimento a vapor e na forma de xarope (Portuguese) [Physical-chemical analysis of the characteristics of sugar beet and waste in natura, steam cooking and in the form of syrup]. In: XXV Congresso Brasileiro de Ciência e Tecnologia de Alimentos, Gramado, 2016. Gramado: Anais do Evento; 2016.

31. Barcelos JC. Desempenho da beterraba ‘katrina’ submetida a lâminas de água e doses de nitrogen aplicadas via fertirrigação (Portuguese) [Performance of ‘katrina’ beet subjected to water depths and nitrogen doses applied via fertigation] [PhD thesis]. São Paulo: Universidade Estadual Paulista; 2010.

32. Marques LF, Medeiros DC, Coutinho O, et al. Yield and quality of the beetroot in function of bovine dung manning. Revista Brasileira De Agroecologia 2010; 5(1): 24–31.

33. Reis HF, Melo CM, Melo EP, et al. Post-harvest conservation of crisp lettuce under modified atmosphere, cultivated on organic and conventional system. Horticultura Brasileira 2014; 32(3): 303–309.

34. Ferreira LPC. Microencapsulação de extrato de beterraba pelo processo de gelificação iônica (Portuguese) [Microencapsulation of beet extract by ionic gelation process] [Master’s thesis]. São Cristóvão: Federal University of Sergipe; 2018.

35. Bezerra CS, Castro JS, Padinha ML, et al. Physical-chemical characterization of Italian tomatoes produced in organic system in western Para region. Agroecossistemas 2018; 10(2): 37–49.

36. Lima TLS, Cavalcante CL, Diógenes G, et al. Evaluation of physical and chemical composition of fruit pulp marketed in five cities in the Paraiba state-Brazil. Revista Verde de Agroecologia e Desenvolvimento Sustentável 2015; 10(2): 49–55.




DOI: https://doi.org/10.24294/th.v5i2.1829

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.