Reuse of post-culture mushroom substrate in horticultural seedbeds

María R. Yagüe, M. Carmen Lobo

Article ID: 1827
Vol 5, Issue 2, 2022

VIEWS - 398 (Abstract) 287 (PDF)

Abstract


The agronomic use of mushroom post-harvest substrates (SPCHs) in horticultural seedbeds could be an interesting alternative for the reuse of these wastes in line with the European circular economy strategy. This work evaluates the potential use of four treatments with different SPCHs, mushroom (-Ch), mushroom (-St), mushroom compost (-CO), and a mixture (SPCH-Ch and SPCH-St) as substrates for lettuce and chili pepper seed germination. The trial was carried out in a germination chamber using commercial compost as a control treatment. The evaluation was based on its chemical (salinity, N and C content), physical (bulk and real density, porosity and water retention) and plant effect (germination and biomass) characteristics. Of the chemical properties studied, the high salinity in SPCH-Ch and SPCH-CO was a limiting factor for the development of the horticultural species evaluated (electrical conductivity 1:2.5; p/v; ~11 dS m-1), and low germination percentages were observed. Regarding physical properties, porosity and water retention, the SPCH-CO, SPCH-St and mixture treatments presented some values outside the optimal range established for germination substrates. In the case of SPCH-St, its high C/N ratio could be a limitation for supplying N to the crop. In relation to biomass production (aerial and root) of lettuce and chili pepper, all the treatments evaluated obtained similar values to the control treatment. The mixed treatment presented the highest biomass values, significantly higher in the lettuce crop. In general, the mixed treatment proved to be the best alternative for use in the seedbed.


Keywords


Chili Pepper; Lettuce; Physical Properties; Horticultural Planter; Chemical Properties; Organic Substrates

Full Text:

PDF


References


1. EU. On the implementation of the Circular Economy Action Plan [Internet]. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. 2019. Available from: https://ec.europa.eu/commission/sites/beta-political/files/report_implementation_circular_economy_action_plan.pdf.

2. Finney KN, Ryu C, Sharifi VN, et al. The reuse of spent mushroom compost and coal tailing for energy recovery: Comparison of thermal treatment technologies. Bioresource Technology 2009; 100: 310–315. doi: 10.1016/j.biortech.2008.05.054.

3. Industry Report. Global mushroom market size, market share, application analysis, regional outlook, growth trends, key players, competitive strategies 2018 to 2026. Industry Report 2022. ID: 4620326. Dublin: Research and Markets; 2018.

4. Kulshreshreshtha S. Removal of pollutants using mushrooms substrates. Environmental Chemistry Letters 2019; 17: 833–847. doi: 10.1007/s10311-018-00840-2.

5. Royse DJ, Baars J, Tan Q. Current overview of mushroom production in the world. In: Zied DC, Pardo-Giménez A (editors). Edible and medicinal mushrooms: Technology and applications. West Sussex: Wiley-Blackwell; 2017. p. 5–13. doi: 10.1002/9781119149446.ch2.

6. FAOSTAT. Mushrooms and truffles, production quantity (tons) [Internet]. 2019. Available from: http://www.factfish.com/statistic/mushrooms%20and%20truffles%2C%20production%20quantity.

7. Rinker DL. Spent mushroom substrate uses. In: Zied DC, Pardo-Giménez A (editors). Edible and medicinal mushrooms: Technology and applications. West Sussex: Wiley-Blackwell; 2017. p. 427–454. doi: 10.1002/97811 19149446.ch20.

8. Grimm D, Wosten HAB. Mushroom cultivation in the circular economy. Applied Microbiology and Biotechnology 2018; 102: 7795–7803. doi: 10.1007/s00253-018-9226-8.

9. Hanafi FHM, Rezania S, Taib SM, et al. Environmentally sustainable applications of agro-based spent mushroom substrate (SMS): An overview. Journal of Material Cycles and Waste Management 2018; 20: 1383–1396. doi: 10.1007/s10163-018-0739-0.

10. Jasiñska A. Spent mushroom compost (SMC)-retrieved added value product closing loop in agricultural production. Acta Agraria Debreceniensis 150: 185–202. doi: 10.34101/actaagrar/150/1715.

11. Pardo-Giménez A. Reutilización del sustrato agotado en la producción de hongos comestibles cultivados (Spanish) [Reuse of depleted substrate in the production of cultivated edible mushrooms]. ITEA-Información Técnica Económica Agraria 2008; 104(3): 360–368.

12. BOE. Royal Decree 865/2010 of July 2, 2010, on growing media. Madrid: Ministerio de la Presidencia, Boletín Oficial del Estado; 2010. p. 61831–61859.

13. BOE. Order PRA/1943/2016 of 22 December, amending Annexes I, II, IV and VI of Royal Decree 865/2010 of 2 July, on cultivation substrates. Madrid: Boletín Oficial del Estado; 2016. p. 89958–89960.

14. Stewart-Wade SM. Efficiency of organic amendments used in containerized plant pro-duction: Part 1-compost-based amendments. Science Horticulturae 2020; 266: 108856. doi: 10.1016/j.scienta.2019.108856.

15. Postemsky PD, López-Castro RI. Aplicaciones del sustrato residual de hongos a la producción hortícola (Spanish) [Applications of fungal residual substrate to horticultural production]. Horticultura Argentina 2016; 35(86): 44–63.

16. Yeager T, Gilliam C, Bilderback TE, et al. Best management practices, guide for producing container-growing plants. Maryland Nutrient Management Manual. Atlanta: Southern Nursery Ass.; 1997.

17. Bilderback TE, Warren SL, Owen JS, et al. Healthy substrates need physicals too! HortTechnology 2005; 15: 747–751. doi: 10.21273∕HORTTECH.15.4.0747.

18. MAPA. Métodos oficiales de análisis (Spanish) [Official methods of analysis]. Volume III: Official methods of soil and water analysis for irrigation. Madrid: Ministerio de Agricultura, Pesca y Alimentación. Servicio de Publicaciones; 1994. p. 205–285.

19. Walkley A, Black IA. An examination of the Degtjareff method for determining soil organic carbon matter and a proposed modification of the chromic acid titration method. Soil Science 1934; 37: 29–38.

20. Hao X, Ball BC, Culley JLB, et al. Chapter 57 soil densityand porosity. In: Carter MR, Gregorich EG (editors). Soil sampling and methods of analysis. 2nd ed. Boca Raton: CRC Press Taylor & Francis Group; 2006. p. 743–759.

21. UNE 77332:2003. Calidad de suelo: sistemas de incubación de laboratorio para la medida de la mineralización de compuestos orgánicos presents en el suelo bajo condiciones aeróbicas (Spanish) [Soil quality: Laboratory incubation systems for measuring the mineralization of organic compounds present in the soil under aerobic conditions]. Biddeford: UNE; 2003.

22. SAS Institute Inc. SAS/TAT. Software B8.2. US patent. 1999–2001.

23. Paredes C, Medina E, Bustamante MA, et al. Effects of spent mushroom substrates and inorganic fertilizer on the characteristics of a calcareous clayed-loam soil and lettuce production. Soil Use and Management 2016; 32: 487–491. doi: 10.0111/sum.12304.

24. Owaid MN, Abed IA, Al-Saeedi SSS. Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Information Processing in Agriculture 2017; 4: 78–82.doi: 10.1016/j.inpa.2017.01.001.

25. Dar SR, Thomas T, Khan IM, et al. Effect of nitrogen fertilizer with mushroom compost of varied C:N ratio on nitrogen use efficiency, carbon sequestration and rice yield. Communications in Biometry and Crop Science 2009; 4(1): 31–39.

26. Wong JWC, Wang X, Selvam A. Improving compost quality by controlling nitrogen loss during composting. In: Wong JWC, Tyagi RD, Pandey A (editors). Current developments in biotechnology and bioengineering. Amsterdam: Elsevier B.V.; 2017. p. 59–82. doi: 10.1016/b978-0-444-63664-5.00004-6.

27. Ansorena Miner J. Sustratos propiedades y caracterización (Spanish) [Substrate properties and characterization. Madrid: Mundi-Prensa; 1994. p. 172.

28. Gayosso-Rodríguez S, Borges-Gómez L, Villanueva-Couoh E, et al. Physical and chemical characterization of organic materials for agricultural substrates. Agroscience 2018; 52: 639–652.

29. Harp DA, Chen C, Jones C. Physical characteristics of and seed germination in commercial green roof substrates. HortTechnology 2015; 25(2): 221–227. doi: 10.21273/HORT-TECH.25.2.221.

30. Collela CF, Martinez Abreu Soares Costa LM, Junqueira de Moraes TS, et al. Potential utilization of spent Agaricusbiporus mushroom substrate for seeling production and organic fertilizer in tomato cultivation. Ciênca e Agrotecnologia 2019; 43: e017119. doi: 10.1590/1413-705420 1943017119.

31. Meng X, Dai J, Zhang Y, et al. Composed biogas residue and spent mushroom substrate as growth medium for tomato and pepper seedlings. Journal of Environmental Management 2018; 216: 62–69. doi: 10.1016/j.jenvman.2017.09.056.

32. Liu CJ, Duan YL, Jin RZ, et al. Spent mushroom substrates as component of growing media for lettuce seeding. IOP Conference series: Earth and Environmental Science 2018; 185: 012016. doi: 10.1088/1755-1315/185/1/012016.




DOI: https://doi.org/10.24294/th.v5i2.1827

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.