Selection criteria for tomato lines with defined growth habit

Esteban Burbano-Erazo, Iván Javier Pastrana-Vargas, Julián Roberto Mejía-Salazar, Franco Alirio Vallejo-Cabrera

Article ID: 1823
Vol 5, Issue 1, 2022

(Abstract)

Abstract


Introduction: The selection of genotypes with determinate growth habit in tomato should contemplate adequate selection criteria to increase the efficiency of the breeding program. Objective: The objective of this work was to estimate selection criteria for “chonto” type tomato lines with determined growth habit. Materials and methods: This work was carried out at the Universidad Nacional de Colombia (Palmira Campus), in 2016, with seven lines with determinate growth habit and a control with indeterminate growth. Heritability in a broad sense (h2 g), coefficient of environmental variation, coefficient of genetic variation, selection efficiency and genetic gain were determined in parameters of morphological, phonological, fruit quality, fruit shape and production, using the RELM/BLUP procedure of the SELEGEN software. Results: There were three ranges of h2 g, the first with values of h2 g greater than 0.76, the second between 0.53 and 0.38, and the third with a value less than 0.38. The highest values of h2 g were for final plant height with 0.92, plant height at harvest with 0.88, yield per plant with 0.83, days to flowering with 0.83, number of fruits per plant with 0.82, and days to harvest with 0.82. For genetic gain it was found that the control had the highest values for final plant height, plant height at harvest, internode length, days to harvest, harvest duration, soluble solids content, number of fruits per plant, fruit weight and yield per plant; however, in some parameters such as height and phenology for selection by determined growth habit, the lowest values were better. Conclusion: There was evidence of genetic parameters that could be considered as selection criteria for “chonto” type tomato lines with determinate growth habit.


Keywords


Plant Breeding; Heritability; Genetic Parameters; Solanum Lycopersicum

Full Text:

PDF


References


1. Hefferon KL. Can biofortified crops help attain food security? Current Molecular Biology Reports 2016; 2(4): 180–185. doi: 10.1007/s40610-016-0048-0.

2. Nuez VF. El Cultivo del tomate (Portuguese) [Tomato cultivation]. Madrid, ESP: Mundi-Prensa; 1995.

3. Vallejo FA. Mejoramiento genético y producción de tomate en Colombia (Portuguese) [Genetic improvement and tomato production in Colombia]. Cali, COL: Universidad Nacional de Colombia; 1999.

4. de Castro JPA, Nick C, do Carmo Milagres C, et al. Genetic diversity among tomato’s subsamples for pre-breeding. Crop Breeding and Applied Biotechnology 2010; 10(1): 74–82. doi: 10.12702/1984-7033.v10n01a10.

5. Fernández-Moreno JP, Levy-Samoha D, Malitsky S, et al. Uncovering tomato quantitative trait loci and candidate genes for fruit cuticular lipid composition using the Solanum pennellii introgression line population. Journal of Experimental Botany 2017; 68(11): 2703–2716. doi: 10.1093/jxb/erx134.

6. Saleem MY, Akhtar KP, Iqbal Q, et al. Development of tomato hybrids with multiple disease tolerance. Pakistan Journal of Botany 2016; 48(2): 771–778.

7. Martínez V, Nieves-Cordones M, Lopez-Delacalle M, et al. Tolerance to stress combination in tomato plants: New insights in the protective role of melatonin. Molecules 2018; 23(3): 535. doi: 10.3390/molecules23030535.

8. Holland JB, Nyquist WE, Cervantes-Martínez CT, et al. Estimating and interpreting heritability for plant breeding: An update. In: Janick J (editor). Plant Breeding Reviews 2003; 22: 9–112. doi: 10.1002/9780470650202.ch2.

9. Resende MDV. Software Selegen-REML/BLUP: A useful tool for plant breeding. Crop Breeding and Applied Biotechnology 2016; 16(4): 330–339. doi: 10.1590/1984-70332016v16n4a49.

10. Haydar A, Mandal MA, Ahmed MB, et al. Studies on genetic variability and interrelationship among the different traits in tomato (Lycopersicon esculentum Mill.). Middle-East Journal of Scientific Research 2007; 2(3–4): 139–142.

11. Anjum A, Raj N, Nazeer A, et al. Genetic variability and selection parameters for yield and quality attributes in tomato. Indian Journal of Horticulture 2009; 66(1): 73–78.

12. Mohamed SM, Ali EE, Mohamed TY. Study of heritability and genetic variability among different plant and fruit characters of tomato (Solanum lycopersicum L.). International Journal of Scientific & Technology Research 2018; 1(2): 55–58.

13. Ramzan A, Khan TN, Nawab NN, et al. Estimation of genetic components in f 1 hybrids and their parents in determinate tomato (Solanum lycopersicum L.). Journal of Agricultural Research 2014; 52(1): 65–75.

14. Khan BA, Mehboob SF, Ahmad M, et al. Genetic analysis of F2 population of tomato for studying quantitative traits in the cross between Coldera x KHT5. International Journal of Plant Research 2017; 7(4): 90–93. doi: 10.5923/j.plant.20170704.02.

15. Baena D, Cabrera FA, Salazar EI. Avance generacional y selección de líneas promisorias de tomate (Lycopersicon esculentum Mill) tipos chonto y Milano (Portuguese) [Generational advance and selection of promising lines of tomato (Lycopersicon esculentum Mill) chonto and Milano types]. Acta Agronómica 2003; 52(1): 1–9.

16. Vallejo FA, Lobo M. Heredabilidad del rendimiento y sus componentes en tomate, Lycopersicon esculentum, Mill.; Correlaciones genéticas y ambientales (Portuguese) [Heritability of yield and its components in tomato, Lycopersicon esculentum, Mill.; Genetic and environmental correlations]. Acta Agronómica 1994; 44(1–4): 85–94.

17. Resende MDV. SELEGEN REML/BLUP: Sistema estatístico e seleção genética computadorizada via modelos lineares mistos (Portuguese) [SELEGEN REML/BLUP: Statistical system and computerized genetic selection via linear models]. Brasilia, BRA: Embrapa Florestas; 2007.

18. Santos A, Ceccon G, Teodoro PE, et al. Adaptability and stability of erect cowpea genotypes via REML/BLUP and GGE Biplot. Bragantia 2016; 75(3): 299–306. doi: 10.1590/1678-4499.280.

19. Sharanappa KP, Mogali SC. Studies on genetic variability, heritability and genetic advance for yield and yield components in F2 segregating population of tomato (Solanum lycopersicon L.). Karnataka Journal of Agricultural Sciences 2014; 27(4): 524–525. doi: 10.18782/2320-7051.6097.

20. Vallejo FA. Estudios genéticos básicos para la creación de nuevos cultivares de tomate, Lycopersicon esculentum Mill., adaptados a las condiciones de Colombia: Interpretación in6tegral de la investigación (Portuguese) [Basic genetic studies for the creation of new tomato cultivars, Lycopersicon esculentum Mill., adapted to Colombian conditions: Integral interpretation of the research]. Acta Agronómica 1994; 44(1–4): 167–172.

21. Burbano E, Vallejo FA. Production of “chonto” tomato lines, Solanum lycopersicum Mill., with expression of the sp gene responsible of determinate growth. Revista Colombiana de Ciencias Hortícolas 2017; 11(1): 63–71. doi: 10.17584/rcch.2017v11i1.5786.

22. Resende MDV. Genética biometrica e estatística no melhoramento de plantas perenes (Portuguese) [Biometric genetics and statistics in the improvement of perennial plants]. Brasilia, BRA: Embrapa Florestas; 2002.

23. Falconer DS, Mackay FCT. Introduction to quantitative genetics. 4th ed. Harlow, Essex: Longman Group Limited; 1996.

24. Kumar D, Kumar R, Kumar S, et al. Genetic variability, correlation and path coefficient analysis in tomato. International Journal of Vegetable Science 2013; 19(4): 313–323. doi: 10.1080/19315260.2012.726701.

25. Wray N, Visscher P. Estimating trait heritability. Nature Education 2008; 1(1): 29.

26. De Swaef T, Steppe K. Linking stem diameter variations to sap flow, turgor and water potential in tomato. Functional Plant Biology 2010; 37(5): 429–438. doi: 10.1071/FP09233.

27. Peralta G, Carrillo-Rodríguez JC, Chavez-Servia JL, et al. Variation in agronomic traits and lycopene in advanced tomato (Solanum lycopersicum L.) cultivars. Phyton (Buenos Aires) 2012; 81(1): 15–22.

28. Pnueli L, Carmel-Goren L, Hareven D, et al. The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1. Development 1998; 125(11): 1979–1989.

29. Carmel-Goren L, Liu YS, Lifschitz E, et al. The Self-Pruning gene family in tomato. Plant Molecular Biology 2003; 52(6): 1215–1222. doi: 10.1023/B:PLAN.0000004333.96451.11.

30. Finzi RR, Maciel GM, Luz JMQ, et al. Growth habit in mini tomato hybrids from a dwarf line. Bioscience Journal 2017; 33(1): 52–56. doi: 10.14393/BJ-v33n1a2017-35763.

31. Mérida C, Colque M, Mercado H. Evaluación agronómica de 116 híbridos experimentales de tomate (F1) desarrollados por el INIAF, en el Instituto de Investigaciones Agrícolas El Vallecito, Santa Cruz (Portuguese) [Agronomic evaluation of 116 experimental tomato hybrids (F1) developed by INIAF, at the El Vallecito Agricultural Research Institute, Santa Cruz]. Instituto Nacional de Innovación Agropecuaria y Forestal (Bolivia) 2017; 1(3): 16–24.

32. Shokat S, Azhar FM, Nabi G, et al. Estimation of heritability and genetic advance for some characters related to earliness in tomato (Solanum lycopersicum L.). Journal of Agricultural Research 2015; 53(3): 351–356.

33. Filgueira FAR. Novo manual de olericultura: Agrotecnologia moderna na produdcao e comercializadcao de hortalidcas (Portuguese) [New horticulture manual: Modern agrotechnology in the production and commercialization of vegetables]. Viçosa: Universidade Federal de Viçosa; 2000.

34. Yelle S, Chetelat RT, Dorais M, et al. Sink metabolism in tomato fruit: IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiology 1991; 95(4): 1026–1035. doi: 10.1104/pp.95.4.1026.

35. Kolota E, Adamczewska-Sowinska K. Evaluation of new leek cultivars for early cropping. Vegetable Crops Research Bulletin 2001; 54(1): 29–34.

36. López E, Gabriel J, Angulo A, et al. Inheritance and genetic relationship associated with performance, maturity in tomato hybrids [Solanum lycopersicum L. (Mill.)]. Agronomía Costarricense 2015; 39(1): 107–119.

37. Ahmad M, Iqbal M, Khan BA, et al. Response to selection and decline in variability, heritabilty and genetic advance from F2 to F3 generation of tomato (Solanum lycopercicum). International Journal of Plant Research 2017; 7(1): 1–4. doi: 10.5923/j.plant.20170701.01.




DOI: https://doi.org/10.24294/th.v5i1.1823

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.