Blackberry (Rubus glaucus Benth.) fertilized with nitrogen, phosphorus, potassium and calcium: Effect on anthracnose under controlled conditions
Vol 4, Issue 1, 2021
VIEWS - 877 (Abstract) 1013 (PDF)
Abstract
In order to seek management alternatives for anthracnose caused by the fungus Colletotrichum gloeosporioides in blackberry (Rubus glaucus Benth.), at the Tibaitatá Research Center of the Colombian Agricultural Research Corporation AGROSAVIA (formerly CORPOICA), an experiment was conducted to evaluate the effect of the application of the major elements nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) on infections of the fungus C. gloeosporioides strain-52. For this purpose, a randomized complete block design was used with an arrangement of treatments in an orthogonal central composite design. To evaluate the relationship of fertilization levels and disease severity, an artificial inoculation was made on thorny blackberry stems using 0.5 cm mycelial discs at a concentration of 9.53 × 104 conidia. Observations consisted of: disease severity (S), incubation period (IP) and rate of development (r). Data analysis was done by the cluster method on the severity variable, a Pearson correlation analysis between variables, as well as a regression to estimate the effect of nutrients applied on the severity of C. gloeosporioides strain-52. The treatments were concentrated in four groups with the ranges (in parentheses) S (15.9% and 91.8%), PI (9 and 15.3) and Tr (0.0254 and 0.0468). A positive and significant correlation was observed between S and r (P < 0.001) and a negative correlation between PI with S and r (P < 0.001). By means of regression analysis, a linear model was generated that showed a reduction in disease severity with increasing N dose and an increase with the levels of P and Ca applied.
Keywords
Full Text:
PDFReferences
1. Ministerio de Agricultura y Desarrollo Rural (MADR). Anuario estadístico del sector agropecuario 2017 (Spanish) [Statistical yearbook of the agricultural sector 2017]. MADR; 2018.
2. Saldarriaga-Cardona A, Castaño-Zapata J, Arango-Isaza R. Caracterización del agente causante de antracnosis en tomate de árbol, manzano y mora (Spanish) [Characterization of the causal agent of anthracnose on tree tomato, apple and blackberry]. Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales 2008; 32(123): 145–156.
3. Afanador L, Álvarez E, González A. Antracnosis de la mora de Castilla (Rubus glaucus Benth.): Variabilidad en especies y razas del agente causante e identificación de fuentes de resistencia a la enfermedad (Spanish) [Anthracnose of the Castile blackberry (Rubus glaucus Benth.): Variability in species and races of the causative agent and identification of sources of resistance to the disease]. In: Centro de Agricultura Tropical-CIAT. Proyecto Productores de lulo y mora competitivos mediante selección participativa de clones élite, manejo integrado del cultivo y fortalecimiento de cadenas de valor. Fontagro mora lulo. Palmira: Colombia; 2010. p. 66–84.
4. Afanador-Kafuri L, González A, Gañán L, et al. Characterization of the Colletotrichum species causing anthracnose in Andean blackberry in Colombia. Plant Disease 2014; 98(11): 1503–1513.
5. Rupp S, Weber RWS, Rieger D, et al. Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Frontiers in Microbiology 2017; 7(2075): 1–12. doi: 10.3389/fmicb.2016.02075.
6. Gaviria-Hernández V, Patiño-Hoyos LF, Saldarriaga-Cardona A. In vitro evaluation of commercial fungicides for control of Colletotrichum spp., in blackberry. Ciencia y Tecnología Agropecuaria 2013; 14(1): 67–75.
7. López-Vásquez JM, Castaño-Zapata J, Marulanda-Ángel ML, et al. Characterization of Anthracnose resistance caused by Glomerella cingulata and productivity of five Andean blackberry genotypes (Rubus glaucus Benth.). Acta Agronómica 2013; 62(2): 174–185.
8. Huber D, Römheld V, Weinmann M. Relationship between nutrition, plant diseases and pests. In: Marschner P (editor). Marschner’s mineral nutrition of higher plants. Amsterdam: Elsevier; 2012. p. 283–298.
9. Chaboussou F. La trophobiose ou les rapports nutritinnels entre la Plante-hôte et ses parasites (Spanish) [Trophobiosis or nutritional inputs between the host plant and its parasites]. Annales de la Société Entomologique de France 1967; 3(3): 797–809.
10. Velasco V. Role of mineral nutrition on plant disease tolerance. Terra 2000; 17(3): 193–200.
11. McMahon P. Effect of nutrition and soil function on pathogens of tropical tree crops. In: Cumagun C (editor). Plant pathology. InTech; 2012. p. 243–272. doi: 10.5772/32490.
12. Huber D, Thompsom I. Nitrogen and plant disease. In: Datnoff L, Elmer W, Huber D (editors). Mineral nutrition and plant disease. St. Paul, Minnesota, USA: The American Phytopathological Society; 2007. p. 31–43.
13. Walters DR, Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens: Implications for plant disease control. Annals of Applied Biology 2007; 151(3): 307–324.
14. Tavernier V, Cadiou S, Pageau K, et al. The plant nitrogen mobilization promoted by Colletotrichum lindemuthianum in Phaseolus leaves depends on fungus pathogenicity. Journal of Experimental Botany 2007; 58(12): 3351–3360.
15. Prabhu A, Fageria N, Berni R. Phosohorus and plant disease. In: Datnoff L, Elmer W, Huber D (editors). Mineral nutrition and plant disease. St. Paul, Minnesota, USA: The American Phytopathological Society; 2007. p. 45–55.
16. Zhou L, He H, Liu R, et al. Overexpression of GmAKT2 potassium channel enhances resistance to soybean mosaic virus. BMC Plant Biology 2014; 14(1): 1–11.
17. Spann T, Schumann A. Mineral nutrition contributes to plant disease and pest resistance [Internet]. The Horticultural Sciences Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida; 2010. Available from: https://edis.ifas.ufl.edu/hs1181.
18. Saldarriaga A, Navas G, Navas A, et al. Proyecto Biología, caracterización y comportamiento del patógeno de antracnosis de la mora (Rubus glaucus Benth.), como base para establecer estrategias de manejo (Spanish) [Project Biology, characterization and behavior of the blackberry (Rubus glaucus Benth.) anthracnose pathogen, as a basis for establishing management strategies]. Rionegro: Colombian Agricultural Research Corporation-CORPOICA; 2012.
19. Castaño-Zapata J. Principios básicos de fitoepidemiología (Spanish) [Basic principles of jitoepidemiology]. Manizales: Centro Editorial, Universidad de Caldas; 2002.
20. Forero de la Rotta M. Diseases of blackberry. Bogotá: Colombian Agricultural Institute-ICA; 2001.
21. Nam MH, Jeong SK, Lee YS, et al. Effects of nitrogen, phosphorus, potassium and calcium nutrition on strawberry anthracnose. Plant Pathology 2006; 55(2): 246–249.
22. van Bruggen AHC, Gamliel A, Finckh MR. Plant disease management in organic farming systems. Pest Management Science 2016; 72(1): 30–44. doi: 10.1002/ps.4145.
23. He K, Yang SY, Li H, et al. Effects of calcium carbonate on the survival of Ralstonia solanacearum in soil and control of tobacco bacterial wilt. European Journal of Plant Pathology 2014; 140(4): 665–675. doi: 10.1007∕s10658-014-0496-4.
24. Ahn IP, Kim S, Choi WB, et al. Calcium restores pre-penetration morphogenesis abolished by polyamines in Colletotrichum gloeosporioides infecting red pepper. FEMS Microbiology Letters 2003; 227(2): 237–241.
25. Araujo L, Bispo WMS, Rios VS, et al. Induction of the phenylpropanoid pathway by acibenzolar-s-methyl and potassium phosphite increases mango resistance to Ceratocystis fimbriata infection. Plant Disease 2015; 99(4): 447–459. doi: 10.1094/PDIS-08-14-0788-RE.
DOI: https://doi.org/10.24294/th.v4i1.1799
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.