Utilizing method of plant growth regulators induction in processing of polyploidization—A perspective crop development

Pham Van Hieu

Article ID: 2596
Vol 6, Issue 1, 2023

VIEWS - 390 (Abstract)

Abstract


Nowadays, it seems like human beings are worried about how the world will meet its food security demand urgently when they have faced on rapidly increasing population and combat climate change. Scientists and researchers are indispensably investigating to enhance food sources such developing novel cops with high yield and good quality and even coping with the adverse environment in terms of biotic and abiotic stresses. Thus, there is one valuable method it is believed that should be developed further. In fact, it is believed that human beings should continue using it as soon as possible because it can provide the world with a source of food. Polyploidization introduced by plant growth regulator induction is a good method because it is safety and easy to develop new crops with potential agronomic traits, these polyploidy plants are rare aneuploid and it contains intriguing characteristics of polyploidy plants in adapting to ecological variability. This review sheds light on 1) summarizing molecular mechanism of plant growth regulator induction for plant ploidy manipulation; 2) achieving of polyploidization through plant growth regulator induction; 3) enumerating the perspectives of polyploidization in crop development to cope with climate change. Although the role of phytohormones is underestimated, the effectiveness on physiological level of plants to make polyploidy plants is worth considering and the effects and bio-safety of that on human are also concerned.


Keywords


polyploidization; plant growth regulator; cell cycle; food security; climate change

Full Text:

PDF


References


1. Joubés J, Chevalier C. Endoreduplication in higher plants. Plant Molecular Biology 2000; 43: 735–745. doi: 10.1023/A:1006446417196

2. Iwanaga M, Peloquin SJ. Origin and evolution of cultivated tetraploid potatoes via 2n gametes. Theoretical and applied genetics 1982; 61: 161–169. doi: 10.1007/bf00273885

3. Carputo D, Barone A, Frusciante L. 2n gametes in the potato: Essential ingredients for breeding and germplasm transfer. Theoretical and Applied Genetics 2000; 101: 805–813. doi: 10.1007/s001220051547

4. Carputo D, Barone A. Ploidy level manipulations in potato through sexual hybridisation. Annals of Applied Biology 2005; 146: 71–79. doi: 10.1111/j.1744-7348.2005.04070.x

5. Spooner D, Hijmans R. Potato Systematics and Germplasm Collecting, 1989–2000. American Journal of Potato Research 2001; 78: 237–268. doi: 10.1007/BF02875691

6. Wenzel G, Schieder O, Przewozny T, et al. Comparison of single cell culture derived Solanum tuberosum L. plants and a model for their application in breeding programs. Theoretical and applied genetics 1979; 55: 49–55. doi: 10.1007/bf00285189

7. Karp A, Nelson Thomas RE, Bright SWJ. Chromosome variation in protoplast-derived potato plants. Theoretical and Applied Genetics 1982; 63: 265–272. doi: 10.1007/BF00304006

8. Chauvin JE, Souchet C, Dantec JP, Ellissèche D. Chromosome doubling of 2x Solanum species by oryzalin: Method development and comparison with spontaneous chromosome doubling in vitro. Plant Cell Tissue and Organ Culture 2003; 73: 65–73. doi: 10.1023/A:1022663816052

9. Tamayo Ordoñez MC, Espinosa L, De Jesús Y, et al. Advances and perspectives in the generation of polyploid plant species. Euphytica 2006; 209: 1–22. doi: 10.1007/s10681-016-1646-x

10. Tomé LGO, Silva AB, Pinto CABP, et al. Colchicine and oryzalin effects on tetraploid induction and leaf anatomy of Solanum commersonii ssp. Ciência Rural 2016; 46: 1973–1979.

11. Hermsen JGT, Ramanna MS, Roest S, Bokelmann GS. Chromosome doubling through adventitious shoot formation on in vitro cultivated leaf explants from diploid interspecific potato hybrids. Euphytica 1981; 30: 239–246. doi: 10.1007/BF00033983

12. Watanabe J, Orrillo M, Watanabe KN. Evaluation of In Vitro Chromosome-doubled Regenerates with Resistance to Potato Tuber Moth [Phthorimaea opercullella (Zeller)]. Plant Biotechnology 1999; 16: 225–230. doi: 10.5511/plantbiotechnology.16.225

13. Ismail C, Yasin T, Ismail I. Evalution of toxicity of abcisic acid and gibberellic acid in rats: 50 days drinking water study. Journal of Enzyme Inhibition and Medicinal Chemistry 2007; 22: 219–226.

14. Liu S, Huang X, He H, et al. Evaluation of selected plant growth regulators and fungicide residues in fruits for dietary risk assessment. Human and Ecological Risk Assessment: An International Journal 2016; 22: 1386–1395.

15. Celik I, Turker M, Tuluce Y. Abcisic acid and gibberellic acid cause increased lipid peroxidation and fluctuated antioxidant defense systems of various tissues in rats. Journal of Hazardous Materials 2007; 148: 623–629

16. Isik I, Celik I. Investigation of neurotoxic and immunotoxic effects of some plant growth regulators at subacute and subchronic applications on rats. Toxicology and Industrial Health 2015; 31: 1095–1105.

17. Kocaman AY, Guven B. In vitro genotoxicity assessment of the synthetic plant growth regulator, 1-naphthaleneacetamide. Cytotechnology 2016; 68: 947–956.

18. Perrot-Rechenmann C. Cellular responses to auxin: Division versus expansion. Cold Spring Harbor Perspective Biology 2010; 2: a001446. doi: 10.1101/cshperspect.a001446

19. Scherer FEG. AUXIN-BINDING-PROTEIN1, the second auxin receptor: What is the significance of a two-receptor concept in plant signal transduction? Journal of Experimental Botany 2011; 62(10): 3339–3357. doi: 10.1093/jxb/err033

20. Woodward AW, Bartel D. A receptor for auxin. The plant cell 2005; 17: 2425–2429.

21. Urano D, Phan N, Jones JC, et al. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein coupled signaling in Arabidopsis. Nature Cell Biology 2012; 14: 1079–1088. doi: 10.1038/ncb2568

22. Hartig K, Beck E. Crosstalk between auxin, cytokinins, and sugars in the plant cell cycle. Plant Biology 2006; 8: 389–396. doi: 10.1055/s-2006-923797

23. Riou-Khamlichi C, Menges M, Healy JM, Murray JA. Sugar control of the plant cell cycle: Differential regulation of Arabidopsis D-type cyclin gene expression. Molecular Cell Biology 2000; 20: 4513–4521. doi: 10.1128/MCB.20.13.4513-4521.2000

24. Menges M, deJager SM, Gruissem W, Murray JA. Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant Journal 2005; 41: 546–566. doi: 10.1111/j.1365- 313X.2004.02319.x

25. Nieuwland J, Menges M, Murray JAH. The plant cyclins. In: Cell Cycle Control and Plant Development. BlackwellPublishing; 2007. pp. 31–61. doi: 10.1002/9780470988923.ch2

26. Skylar A, Sung F, Hong F, et al. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Development Biology 2011; 351: 82–89. doi: 10.1016/j.ydbio.2010.12.019

27. Silverstone AL, Jung HS, Dill A, et al. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 2001; 13: 1555–1566.

28. Olszewski N, Sun T, Gubler F. Gibberellin signaling: Biosynthesis, catabolism, and response pathways. Plant Cell 2002; 14: S61–S80

29. Ueguchi-Tanaka M, Ashikari M, Nakajima M, et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 2005; 437: 693–698.

30. Willige BC, Ghosh S, Nill C, et al. The DELLA domain of GA INSENSITIVE mediates the interaction with the GA INSENSITIVE DWARF1A gibberellin receptor of Arabidopsis. Plant Cell 2007; 19: 1209–1220.

31. McGinnis KM, Thomas SG, Soule JD, et al. The Arabidopsis SLEEPY1 gene encodes a putative F-box subunit of an SCF E3 ubiquitin ligase. Plant Cell 2003; 15: 1120–1130.

32. Fu X, Richards DE, Fleck B, et al. The Arabidopsis mutant sleepy1gar2–1 protein promotes plant growth by increasing the affinity of the SCFSLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 2004; 16: 1406–1418.

33. Dill A, Thomas SG, Hu J, et al. The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 2004; 16: 1392–1405.

34. Achard P, Gusti A, Cheminant S, et al. Gibberellin signaling controls cell proliferation rate in Arabidopsis. Current Biology 2009; 19: 1188–1193. doi: 10.1016/j.cub.2009.05.059

35. Herawati MM, Pudjihartati E, Pramono S, et al. Obtaining Artemisia cina polyploidy through plant growth regulator treatment in shoot culture. Agrivita 2015; 37(2): 178–184. doi: 10.17503/agrivita.v37i2.490

36. Kasmiyati S, Kristiani EBE, Herawati MM. Effect of induced polyploidy on plant growth, chlorophyll and flavonoid content of Artemisia cina. Biosaintifika: Journal of Biology & Biology Education 2020; 12(1): 90–96. doi: 10.15294/biosaintifika.v12i1.22548

37. Watanabe KM, Orrillo M, Iwanaga R, et al. Diploid potato germplasm derived from wild and landrace genetic resources. American Potato Journal 1994; 71: 599–604.

38. Watanabe KN. Potato genetics, genomics, and applications. Breeding Science 2015; 65: 53–68. doi: 10.1270/jsbbs.65.53

39. Soressia GP, Cammareri G, Picarella ME. Improvement of in vitro vegetative propagation technique in tomato (Solanum lycopersicum). Acta Horticulturae 2009; 812(812): 283–288. doi: 10.17660/ActaHortic.2009.812.38

40. Liu B, Storme ND, Geelen D. Gibberellin Induce Diploid Pollen Formation by Interfering with Meiotic Cytokinesis. Plant Physiology 2017; 173: 338–353. doi: 10.1104/pp.16.00480

41. Lattier JD, Touchell DH, Ranney TG, Smith JC. Micropropagation and Polyploid Induction of Acer platanoides ‘Crimson Sentry. Journal of Environmental Horticultures 2013; 31(4): 246–252.

42. García-Fortea E, Garcı´a-Pe´rez A, Gimeno-Paez E, et al. Ploidy modification for plant breeding using in vitro Organogenesis: A case in Eggplant Pasquale Tripodi (2021), Crop Breeding: Genetic Improvement Methods. Methods in Molecular Biology 2021; 2264. doi: 10.1007/978-1-0716-1201-914

43. Hieu PV. Polyploid gene expression and regulation in polysomic polyploids. American Journal of Plant Sciences 2019; 10: 1409–1443. doi: 10.4236/ajps.2019.108101

44. Hieu P. Evolutionary Fixed Potential Agronomic Traits in Polysomic Polyploidy Plants with Special Reference to Potato. American Journal of Plant Sciences 2023; 14: 793–811. doi: 10.4236/ajps.2023.147053

45. Hieu PV. The Unique Existence of Chromosomal Abnormalities in Polyploidy Plants. In: Down Syndrome and Other Chromosome Abnormalities. IntechOpen; 2021. doi: 10.5772/intechopen.99821

46. Touchell DH, Palmer IE, Ranney TG. In vitro Ploidy Manipulation for Crop Improvement. Frontier in Plant Sciences 2020; 11: 722. doi: 10.3389/fpls.2020.00722

47. Bhattarai K, Kareem A, Deng Z. In vivo induction and characterization of polyploids in gerbera daisy. Scientia Horticulturae 2021; 282: e110054. doi: 10.1016/j.scienta.2021.110054

48. Saminathan T, Nimmakayala Manohar S, Malkaram S, et al. Differential Gene Expression and Alternative Splicing between Diploid and Tetraploid Watermelon. Journal of Experimental Botany 2015; 66: 1369–1385. doi: 10.1093/jxb/eru486

49. Zhang N, Bao Y, Xie Z, et al. Efficient Characterization of Tetraploid Watermelon. Plants 2019; 8: 419. doi: 10.3390/plants8100419

50. Raboin LM, Carreel F, Noyer JL, et al. Diploid ancestors of triploid export banana cultivars: Molecular identification of 2n restitution gamete donors and n gamete donors. Molecular Breeding 2005; 16: 333–341. doi: 10.1007/s11032-005-2452-7

51. Marshall WF, Young KD, Swaffer M, et al. What determines cell size? BMC Biology 2012; 10: 101. doi: 10.1186/1741-7007-10-101

52. Doyle J, Coate J. Polyploidy, the nucleotype, and novelty: The impact of genome doubling on the biology of the cell. International Journal Plant Sciences 2019; 180: 1–52. doi: 10.1086/700636

53. Bomblies K. When everything changes at once: Finding a new normal after genome duplication. Proceeding of the royal society B 2020; 287: 20202154. doi: 10.1098/rspb.2020.2154

54. Roddy AB, Théroux-Rancourt G, Abbo T, et al. The scaling of genome size and cell size limits maximum rates of photosynthesis with implications for ecological strategies. International Journal Plant Sciences 2020; 181: 75–87. doi: 10.1086/706186

55. Bergmann DC, Sack FD. Stomatal development. Annual Review Plant Biology 2007; 58: 163–181. doi: 10.1146/annurev.arplant.58.032806.104023

56. Brodribb TJ, Sussmilch F, McAdam SAM. From reproduction to production, stomata are the master regulators. Plant Journal 2020; 101: 756–767. doi: 10.1111/tpj.14561

57. Schlüter U, Muschak M, Berger D, Altmann T. Photosynthetic performance of an Arabidopsis mutant with elevated stomatal density (sdd1–1) under different light regimes. Journal Experienced Botany 2003; 54: 867–874. doi: 10.1093/jxb/erg087

58. Büssis D, von Groll U, Fisahn J, Altmann T. Stomatal aperture can compensate altered stomatal density in Arabidopsis thaliana at growth light conditions. Functional Plant Biology 2006; 33: 1037–1043. doi: 10.1071/FP06078

59. Contreras RN, Ranney TG, Tallury SP. Reproductive behavior of diploid and allotetraploid Rhododendron L. ‘Fragrant Affinity’. Hortscience 2007; 42: 31–34. doi: 10.21273/hortsci.42.1.31

60. Olsen RT, Ranney TG, Viloria Z. Reproductive behavior of induced allotetraploid x Chitalpa and in vitro embryo culture of polyploidy progeny. Journal American Society Horicticultural Sciences 2006; 131: 716–724. doi: 10.21273/jashs.131.6.716

61. Oates KM, Ranney TG, Touchell DH. Influence of Induced Polyploidy on Fertility and Morphology of Rudbeckia Species and Hybrids. Hortscience 2012; 47: 1217–1221. doi: 10.21273/hortsci.47.9.1217

62. Touchell DH, Ranney TG. Chromosome doubling and fertility restoration in Miscanthus × giganteus. HortScience 2012; 47: S334. doi: 10.1139/g97-072

63. Meng H, Jiang S, Hua S, et al. Comparison between a tetraploid turnip and its diploid progenitor (Brassica rapa L.): The adaptation to salinity stress. Agricultural Sciences in China 2013; 10(3): 363–375. doi: 10.1016/S1671-2927(11)60015-1

64. Tu Y, Jiang A, Gan L, et al. Genome duplication improves rice root resistance to salt stress. Rice 2014; 7(1): 15. doi: 10.1186/s12284-014-0015-4

65. Xue H, Zhang F, Zhang Z, et al. Differences in salt tolerance between diploid and autotetraploid apple seedlings exposed to salt stress. Scientia Horticulturae 2015; 190: 24–30. doi: 10.1016/j. scienta.2015.04.009

66. Yan K, Wu C, Zhang L, Chen X. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Frontiers of Plant Science 2015; 6: 227. doi: 10.3389/fpls.2015.00227

67. Fan G, Li X, Deng M, et al. Comparative analysis and identification of miRNAs and their target genes responsive to salt stress in diploid and tetraploid Paulownia fortunei seedlings. PLOS One 2016; 11(2): e0149617. doi: 10.1371/journal. pone.0149617

68. Fan G, Wang L, Deng M, et al. Changes in transcript related to osmosis and intracellular ion homeostasis in Paulownia tomentosa under salt stress. Frontiers in Plant Science 2016; 7: 384. doi: 10.3389/fpls.2016.00384

69. Yu L, Liu X, Boge W, Liu X. Genome-wide association study identifies loci for salt tolerance during germination in autotetraploid alfalfa (Medicago sativa L.) using genotypingby-sequencing. Frontiers in Plant Science 2016; 7: 956. doi: 10.3389/fpls.2016. 0956

70. Deng M, Dong Y, Zhao Z, et al. Dissecting the proteome dynamics of the salt stress induced changes in the leaf of diploid and autotetraploid Paulownia fortunei. PLOS One 2017; 12(7): e0181937. doi: 10.1371/journal.pone.0181937

71. Liu B, Sun G. microRNAs contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. Plant Journal 2017; 91(1): 57–69. doi: 10.1111/tpj.13546

72. Zhao Z, Li Y, Liu H, et al. Genome-wide expression analysis of salt-stressed diploid and autotetraploid Paulownia tomentosa. PLOS One 2017; 12(10): e0185455. doi: 10.1371/journal. pone.0185455

73. del Pozo JC, Ramirez-Parra E. Deciphering the molecular bases for drought tolerance in Arabidopsis autotetraploids. Plant, Cell and Environment 2014; 37(12): 2722–2737. doi: 10.1111/pce.12344

74. Niu SY, Wang Z, Zhao M, et al. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis. PLOS One 2016; 11(7): e0158750. doi: 10.1371/journal.pone.0158750

75. Cao X, Fan G, Cao L, et al. Drought stress-induced changes of microRNAs in diploid and autotetraploid Paulownia tomentosa. Genes and Genomics 2017; 39(1): 77–86. doi: 10.1007/s13258-016-0473-8

76. Zhao Z, Niu S, Fan G, et al. Genome-wide analysis of gene and microRNA expression in diploid and autotetraploid Paulownia fortunei (Seem) Hemsl. under drought stress by transcriptome, microRNA, and degradome sequencing. Forests 2018; 9(2): 88. doi: 10.3390/f9020088

77. Rao S, Tian Y, Xia X, et al. Chromosome doubling mediates superior drought tolerance in Lycium ruthenicum via abscisic acid signaling. Horticulture Research 2020; 7: 40. doi: 10.1038/s41438-020-0260-1

78. Li M, Zhang C, Hou L, et al. Multiple responses contribute to the enhanced drought tolerance of the autotetraploid Ziziphus jujuba Mill. var. spinosa. Cell Bioscience 2021; 11: 119. doi: 10.1186/s13578-021-00633-1

79. Zhang XY, Hu CG, Yao JL. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. Journal of Plant Physiology 2010; 167(2): 88–94. doi: 10.1016/j.jplph.2009.07.006

80. DeBolt S. Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales. Genome Biology and Evolution 2010; 2: 441–453. doi: 10.1093/gbe/evq033

81. Caruso I, Lepore L, De Tommasi N, et al. Secondary metabolite profile in induced tetraploids of wild Solanum commersonii dun. Chemistry & Biodiversity 2011; 8: 2226–2237

82. Caruso I, Dal Piaz F, Malafronte N, et al. Impact of ploidy change on secondary metabolites and photochemical efficiency in Solanum bulbocastanum. Natural Product Communications 2013; 8: 1934578X1300801011.

83. Deng B, Du W, Changlai L, et al. Antioxidant response to drought, cold and nutrient stress in two ploidy levels of tobacco plants: Low resource requirement confers polytolerance in polyploids. Plant Growth Regulation 2012; 66(1): 37–47. doi: 10.1007/s10725-011-9626-6

84. Syngelaki E, Daubert M, Klatt S, Hörandl E. Phenotypic Responses, Reproduction Mode and Epigenetic Patterns under Temperature Treatments in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae). Biology 2020; 9: 315. doi: 10.3390/biology9100315

85. Ruiz M, Quiñones A, MartínezAlcántara B, et al. Tetraploidy Enhances Boron-Excess Tolerance in Carrizo Citrange (Citrus sinensis L. Osb. × Poncirus trifoliata L. Raf.). Frontiers in Plant Science 2016; 7: 701. doi: 10.3389/fpls.2016.00701

86. Li M, Xu G, Xia X, et al. Deciphering the physiological and molecular mechanisms for copper tolerance in autotetraploid Arabidopsis. Plant Cell Reports 2017; 36(10): 1585–1597. doi: 10.1007/s00299-017-2176-2

87. Mu H, Lin L, Zhang Q, et al. Growth, proline content and proline-associated gene expression of autotetraploid Betula platyphylla responding to NaHCO3 stress. Dendrobiology 2016; 75: 123–129. doi: 10.12657/denbio.075.012

88. Jansky S, Haynes K, Douches D. Comparison of Two Strategies to Introgress Genes for Resistance to Common Scab from Diploid Solanum chacoense into Tetraploid Cultivated Potato. American Journal of Potato Research 2019; 96: 255–261. doi: 10.1007/s12230-018-09711-6

89. Hias N, Svara A, Wannes Keulemans J. Effect of polyploidisation on the response of apple (Malus × domestica Borkh.) to Venturia inaequalis infection. European Journal of Plant Pathology 2018; 151(2): 515–526. doi: 10.1007/s10658-017-1395-2




DOI: https://doi.org/10.24294/tge.v6i1.2596

Refbacks

  • There are currently no refbacks.


License URL: https://creativecommons.org/licenses/by-nc/4.0/

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.