Modelling individual tree maximum basal area growth rates of five tall eucalypt species growing in even-aged forests
Vol 6, Issue 2, 2023
VIEWS - 234 (Abstract) 180 (PDF)
Abstract
Keywords
Full Text:
PDFReferences
1. Weiskittel AR, Hann DW, Kershaw JA, Vanclay JK. Forest Growth and Yield Modelling. Wiley-Blackwell; 2011. doi: 10.1002/9781119998518
2. Burkhart HE, Tomé M. Modeling Forest Trees and Stands. Springer Dordrecht; 2012. doi: 10.1007/978-90-481-3170-9
3. Pretzsch H, Biber P. Size-symmetric versus size-asymmetric competition and growth partitioning among trees in forest stands along an ecological gradient in central Europe. Canadian Journal of Forest Research. 2010; 40(2): 370−384. doi: 10.1139/X09-195
4. Mattay JP, West PW. A Collection of Growth and Yield Data from Eight Eucalypt Species Growing in Even-aged Monoculture Forest. Division of Forestry, User Series No 18. CSIRO Publishing; 1994.
5. West PW, Mattay JP. Yield prediction models and comparative growth rates for six eucalypt species. Australian Forestry. 1993; 56(3): 211−225. doi: 10.1080/00049158.1993.10674609
6. Coomes DA, Allen RB. Effects of size, competition and altitude on tree growth. Journal of Ecology. 2007; 95(5): 1084−1097. doi: 10.1111/j.1365-2745.2007.01280.x
7. Pommerening A, LeMay V, Stoyan D. Model-based analysis of the influence of ecological processes on forest point pattern formation—A case study. Ecological Modelling. 2011; 222(3): 666–678. doi: 10.1016/j.ecolmodel.2010.10.019
8. Bošeľ̋a M, Petráš R, Šebeň V, et al. Evaluating competitive interactions between trees in mixed forests in the Western Carpathians: Comparison between long-term experiments and SIBYLA simulations. Forest Ecology and Management. 2013; 310: 577−588. doi: 10.1016/j.foreco.2013.09.005
9. Pommerening A, Särkkä A. What mark variograms tell about spatial plant interactions. Ecological Modelling. 2013; 251: 64–72. doi: 10.1016/j.ecolmodel.2012.12.009
10. Pommerening A, Maleki K. Differences between competition kernels and traditional size-ratio based competition indices used in forest ecology. Forest Ecology and Management. 2014; 331: 135−143. doi: 10.1016/j.foreco.2014.07.028
11. Häbel H, Myllymäki M, Pommerening A. New insights on the behaviour of alternative types of individual-based tree models for natural forests. Ecological Modelling. 2019; 406: 23−32. doi: 10.1016/j.ecolmodel.2019.02.013
12. Tian D, Bi H, Jin X, Li F. Stochastic frontiers or regression quantiles for estimating the self-thinning surface in higher dimensions? Journal of Forestry Research. 2021; 32: 1515–1533. doi: 10.1007/s11676-020-01196-6
13. Koenker R, Hallock KF. Quantile regression. Journal of Economic Perspectives. 2002; 15(4): 143−156.
14. Cade BS, Noon BR. A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment. 2003; 1(8): 412−420. doi: 10.2307/3868138
15. Bi H, Turvey ND. A method of selecting data points for fitting the maximum biomass-density line for stands undergoing self-thinning. Australian Journal of Ecology. 1997; 22(3): 356−359. doi: 10.1111/j.1442-9993.1997.tb00683.x
16. Bi H, Wan G, Turvey ND. Estimating the self-thinning boundary line as a density-dependent stochastic biomass frontier. Ecology. 2000; 81(6): 1477–1483. doi: 10.1890/0012-9658(2000)081[1477:ETSTBL]2.0.CO;2
17. Zhang L, Bi H, Gove JH, Heath LS. A comparison of alternative methods for estimating the self-thinning boundary line. Canadian Journal of Forest Research. 2005; 35(6): 1507–1514. doi: 10.1139/x05-070
18. West PW. Modelling maximum stem basal area growth rates of individual trees of Eucalyptus pilularis Smith. Forest Science. 2021; 67(6): 633–636. doi: 10.1093/forsci/fxab047
19. West PW. Quantifying effects on tree growth rates of symmetric and asymmetric inter-tree competition in even-aged, monoculture Eucalyptus pilularis forests. Trees. 2023; 37: 239−254. doi: 10.1007/s00468-022-02341-w
20. West PW. Effects of site productive capacity on individual tree maximum basal area growth rates of Eucalyptus pilularis Smith in subtropical Australia. Journal of Forestry Research. 2023; 34: 1659–1668. doi: 10.1007/s11676-023-01623-4
21. Smith WR, Farrar Jr. RM, Murphy PA, et al. Crown and basal area relationships of open-grown southern pines for modeling competition and growth. Canadian Journal of Forest Research. 1992; 22(3): 341–347. doi: 10.1139/x92-044
22. Pienaar LV, Turnbull KJ. The Chapman–Richards generalization of von Bertalanffy’s growth model for basal area growth and yield in even-aged stands. Forest Science. 1973; 19(1): 2−22. doi: 10.1093/forestscience/19.1.2
23. Hahn JT, Leary RA. Potential diameter growth functions. In: A generalized Forest Growth Projection System Applied to The Lake States Region. General Technical Report NC−49. U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station; 1979. pp. 22−26.
24. Teck RM, Hilt DE. Individual-tree Diameter Growth Model for the Northeastern United States. Research Paper NE−649. U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station; 1991. doi: 10.2737/NE-RP-649
25. Bragg DC. Potential relative increment (PRI): A new method to empirically derive optimal tree diameter growth. Ecological Modelling. 2001; 137(1): 77−92. doi: 10.1016/S0304-3800(00)00433-6
26. Schröder J, Soalleiro RR, Alonso GV. An age-independent basal area increment model for maritime pine trees in northwestern Spain. Forest Ecology and Management. 2002; 15(1–3): 55–64. doi: 10.1016/S0378-1127(00)00657-5
27. Canham CD, LePage PT, Coates KD. A neighborhood analysis of canopy tree competition: Effects of shading versus crowding. Canadian Journal of Forest Research. 2004; 34(4): 778−787. doi: 10.1139/x03-232
28. Lamonica D, Pagel J, Valdés-Correcher E, et al. Tree potential growth varies more than competition among spontaneously established forest stands of pedunculate oak (Quercus robur). Annals of Forest Science. 2020; 77: 80. doi: 10.1007/s13595-020-00981-x
29. Pommerening A, Sterba H, West P. Sampling theory inspires quantitative forest ecology: The story of the relascope kernel function. Ecological Modelling. 2022; 467: 109924. doi: 10.1016/j.ecolmodel.2022.109924
30. Gower ST, McMurtrie RE, Murty D. Aboveground net primary production decline with stand age: Potential causes. Trends in Ecology & Evolution. 1996; 11(9): 378−382. doi: 10.1016/0169-5347(96)10042-2
31. Ryan MG, Binkley D, Fownes JH. Age-related decline in forest productivity: Pattern and process. Advances in Ecological Research. 1997; 27: 213−262. doi: 10.1016/S0065-2504(08)60009-4
32. Davis LS, Johnson KN, Bettinger P, Howard T. Forest Management, 4th ed. McGraw-Hill; 2000.
33. West PW. Tree and Forest Measurement, 3rd ed. Springer Cham; 2015. doi: 10.1007/978-3-319-14708-6
34. Binkley D. Acorn review: The persistent mystery of declining growth in older forests. Forest Ecology and Management. 2023; 538: 121004. doi: 10.1016/j.foreco.2023.121004
35. Ryan MG, Phillips N, Bond BJ. The hydraulic limitation hypothesis revisited. Plant, Cell & Environment. 2006; 29(3): 367–381. doi: 10.1111/j.1365-3040.2005.01478.x
36. Koch GW, Sillett SC, Jennings GM, Davis SD. The limits to tree height. Nature. 2004; 428: 851–854. doi: 10.1038/nature02417
37. West PW. Do increasing respiratory costs explain the decline with age in forest growth rate? Journal of Forestry Research. 2020; 31(3): 693−712. doi: 10.1007/s11676-019-01020-w
38. Boland DJ, Brooker MIH, Chippendale GM, et al. Forest Trees of Australia, 5th ed. CSIRO Publishing; 2006.
39. Florence RG (editor). Ecology and Silviculture of Eucalypt Forests. CSIRO Publishing; 1996.
40. West PW. Comparative growth rates of several eucalypts in mixed-species stands in southern Tasmania. [Eucalyptus regnans, E. obliqua, hybrids of these two, and E. globulus]. New Zealand Journal of Forestry Science. 1981; 11: 45−52.
41. Sillett SC, Van Pelt R, Koch GW, et al. Increasing wood production through old age in tall trees. Forest Ecology and Management. 2010; 259(5): 976−994. doi: 10.1016/j.foreco.2009.12.003
42. Sillett SC, Van Pelt R, Kramer RD, et al. Biomass and growth potential of Eucalyptus regnans up to 100 m tall. Forest Ecology and Management. 2015; 348: 78−91. doi: 10.1016/j.foreco.2015.03.046
43. Koch GW, Sillett SC, Antoine ME, Williams CB. Growth maximization trumps maintenance of leaf conductance in the tallest angiosperm. Oecologia. 2015; 177: 321–331. doi: 10.1007/s00442-014-3181-6
44. Wensel LC, Meerschaert WJ, Biging GS. Tree height and diameter growth models for northern California conifers. Hilgardia. 1987; 55: 1−20. doi: 10.3733/HILG.V55N08P020
45. Belcher DW, Holdaway MR, Brand GJ. A Description of STEMS: The Stand and Tree Evaluation and Modeling System. General Technical Report NC−79. U.S. Department of Agriculture, Forest Service; 1982. doi: 10.2737/NC-GTR-79
46. Lessard VC, McRoberts RE, Holdaway MR. Diameter growth models using Minnesota forest inventory and analysis data. Forest Science. 2001; 47(3): 301−310. doi: 10.1093/forestscience/47.3.301
47. Bragg DC, Roberts DW, Crow TR. A hierarchical approach for simulating northern forest dynamics. Ecological Modelling. 2004; 173(1): 31−94. doi: 10.1016/j.ecolmodel.2003.08.017
48. West PW. Estimation of height, bark thickness and plot volume in regrowth eucalypt forest. Australian Forest Research. 1979; 9(4): 295−308.
49. West PW. Functions to estimate tree height and bark thickness of Tasmanian regrowth Eucalypts. Australian Forest Research. 1982; 12(3): 183−190.
50. Paul K, Roxburgh SH, Chave J, et al. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale. Global Change Biology. 2016; 22(6): 2106−2124. doi: 10.1111/gcb.13201
DOI: https://doi.org/10.24294/sf.v6i2.2738
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 P.W. West
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.