Progressive fragmentation and loss of natural forest habitat in one of the world’s biodiversity hotspots
Vol 4, Issue 1, 2021
VIEWS - 1132 (Abstract)
Abstract
Knowledge of the state of fragmentation and transformation of a forested landscape is crucial for proper planning and biodiversity conservation. Chile is one of the world’s biodiversity hotspots; within it is the Nahuelbuta mountain range, which is considered an area of high biodiversity value and intense anthropic pressure. Despite this, there is no precise information on the degree of transformation of its landscape and its conservation status. The objective of this work was to evaluate the state of the landscape and the spatio-temporal changes of the native forests in this mountain range. Using Landsat images from 1986 and 2011, thematic maps of land use were generated. A 33% loss of native forest in 25 years was observed, mainly associated to the substitution by forest plantations. Changes in the spatial patterns of land cover and land use reveal a profound transformation of the landscape and advanced fragmentation of forests. We discuss how these patterns of change threaten the persistence of several endemic species at high risk of extinction. If these anthropogenic processes continue, these species could face an increased risk of extinction.
Keywords
Full Text:
PDFReferences
1. Echeverría C, Newton A, Nahuelhual L, et al. How landscapes change: Integration of spatial patterns and human processes in temperate landscapes of southern Chile. Applied Geography 2012; 32: 822–831.
2. McIntyre S, Hobbs R. A framework for conceptualizing human effects on landscapes and its relevance to management and research models. Conservation Biology 1999; 13: 1282–1292.
3. Echeverría C, Coomes D, Salas J, et al. Rapid deforestation and fragmentation of Chilean Temperate Forests. Biological Conservation 2006; 130(4): 481–494.
4. Steininger M, Tucker CJ, Ersts P, et al. Clearance and fragmentation of tropical deciduous forest in the Tierras Bajas, Santa Cruz, Bolivia. Conservation Biology 2001; 15(4): 856–866.
5. Liu J, Taylor WW. Integrating landscape ecology into natural resource management. Cambridge, UK: Cambridge University Press; 2002.
6. Turner IM. Species loss in fragments of tropical rain forest: A review of the evidence. Journal of Applied Ecology 1996; 33(2): 200–209.
7. Forman RT, Godron M. Landscape ecology. New York: Wiley; 1986.
8. Lindenmayer DB, Fischer J. Habitat fragmentation and landscape change: An ecological and conservation synthesis. Washington: Island Press; 2006. p. 1–329.
9. López-Barrera F. Estructura y función en bordes de bosques (Spanish) [Structure and function in forest edges]. Revista Ecosistemas 2004; 13(1): 55–68.
10. Bennett AF. Linkages in the landscape: The role of corridors and connectivity in wildlife conservation. Gland, Switzerland and Cambridge, UK: IUCN; 1999. 1–241.
11. Peyras M, Vespa NI, Bellocq MI, et al. Quantifying edge effects: The role of habitat contrast and species specialization. Journal of Insect Conservation 2013; 17(4): 807–820.
12. Echeverría C, Newton A, Lara A, et al. Impacts of forest fragmentation on species composition and forest structure in the temperate landscape of southern Chile. Global Ecology and Biogeography 2007; 16(4): 426–439.
13. Tabarelli M, Mantovani W, Peres CA. Effects of habitat fragmentation on plant guild structure in the montane Atlantic forest of southeastern Brazil. Biological Conservation 1999; 91(2-3): 119–127.
14. Laurance WF, Lovejoy TE, Vasconcelos HL, et al. Ecosystem decay of Amazonian forest fragments: A 22-year investigation. Conservation Biology 2002; 16(3): 605–618.
15. Wiegand T, Revilla E, Moloney KA. Effects of habitat loss and fragmentation on population dynamics. Conservation Biology 2005; 19(1): 108–121.
16. Crooks KR, Burdett CL, Theobald DM, et al. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philosophical Transactions of the Royal Society B: Biological Sciences 2011; 366(1578): 2642–2651.
17. Barbosa O, Marquet PA. Effects of forest fragmentation on the beetle assemblage at the relict forest of Fray Jorge, Chile. Oecologia 2002; 132(2): 296–306.
18. Castelletta M, Thiollay JM, Sodhi NS. The effects of extreme forest fragmentation on the bird community of Singapore Island. Biological Conservation 2005; 121(1): 135–155.
19. De Angelo C, Paviolo A, di Bitetti M. Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the Upper Paraná Atlantic Forest. Diversity and Distributions 2011; 17(3): 422–436.
20. Stratford JA, Stouffer PC. Forest fragmentation alters microhabitat availability for Neotropical terrestrial insectivorous birds. Biological Conservation 2015; 188: 109–115.
21. Mittermeier RA, Turner WR, Larsen FW, et al. Global biodiversity conservation: The critical role of hotspots. In: Zachos FE, Habel JC (editors). Biodiversity hotspots: Distribution and protection of conservation priority areas. Berlin, Heidelberg: Springer; 2011. p. 3–23.
22. Smith-Ramírez C. The Chilean coastal range: A vanishing center of biodiversity and endemism in South American temperate rainforests. Biodiversity & Conservation 2004; 13(2): 373–393.
23. Wolodarsky-Franke A, Díaz S. Cordillera de Nahuelbuta Reserva mundial de biodiversidad (Spanish) [Nahuelbuta Mountain Range World Biodiversity Reserve]. Valdivia, Chile: World Wildlife Fund; 2011. p. 1–56.
24. Hechenleitner V, Gardner MF, Thomas PI, et al. Plantas amenazadas del centro-sur de Chile. Distribución, conservación y propagación (Spanish) [Threatened plants of south-central Chile. Distribution, conservation and propagation]. Valdivia, Chile: Trama Impresores S.A.; 2005.
25. Miranda A, Altamirano A, Cayuela L, et al. Native forest loss in the Chilean biodiversity hotspot: Revealing the evidence. Regional Environmental Change 2017; 17(1): 285–297.
26. Di Castri F, Hajek ER. Bioclimatología de Chile (Spanish) [Bioclimatology of Chile]. Santiago: Editorial Universidad Católica de Chile; 1976.
27. Mardones M. La cordillera de la Costa: caracterización físico-ambiental y regiones morfoestructurales (Spanish) [The Coastal Cordillera: Physical-environmental characterization and morphostructural regions]. In: Smith-Ramírez C, Armesto JJ, Valdovinos C (editors). Historia, biodiversidad y ecología de los bosques costeros de Chile. Santiago, Chile: Editorial Universitaria; 2005. p. 39–59.
28. SERNAGEOMIN (Servicio Nacional de Geología y Minería). Mapa geológico de Chile: Version digital. Publicación Geológica Digital, Núm. 4 (CD-ROM, versión1.0) (Spanish) [Geological map of Chile: Digital version. Digital Geological Publication, No. 4 (CD-ROM, version 1.0)]. Santiago: Servicio Nacional de Geología y Minería; 2003. p. 1–25.
29. CIREN (Centro de Información de Recursos Naturales). Descripciones de suelos. Materiales y símbolos. Estudio agrológico VII y IX Región (Spanish) [Soil descriptions. Materials and symbols. Agrological study VII and IX Region]. Santiago: Centro de Information de Recursos Naturales (CIREN); 1999.
30. Luebert F, Pliscoff P. Sinopsis bioclimática y vegetacional de Chile (Spanish) [Bioclimatic and vegetational synopsis of Chile]. Santiago: Editorial Universitaria; 2006.
31. Chander G, Markham BL, Helder DL. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 2009; 113(5): 893–903.
32. Reese H, Olsson H. C-correction of optical satellite data over alpine vegetation areas: A comparison of sampling strategies for determining the empirical c-parameter. Remote Sensing of Environment 2011; 115(6): 1387–1400.
33. Huete AR. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment 1988; 25(3): 295–309.
34. Rouse Jr JW, Haas RH, Schell JA, et al. Monitoring vegetation systems in the Great Plains with ERTS-1. In: Freden SC, Mercanti EP, Becker MA (editors). Third Earth Resources Technology Satellite-1 Symposium. Volume 1: Technical Presentations, section A. The Proceedings of a Symposium Held by Goddard Space Flight Center at Washington, D.C.; 1974 Dec 10-14; Washington. Washington: NASA; 1974. p. 309–317.
35. Tucker CJ. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 1979; 8(2): 127–150.
36. Corporación Nacional Forestal (Conaf), Comisión Nacional de Medio Ambiente (Conama), International Bank for Reconstruction and Development (IBRD), Universidad Austral de Chile, Pontificia Católica de Chile and Universidad Católica de Temuco. Catastro y evaluación de los recursos vegetacionales nativos de Chile: monitoreo de cambios. Informe nacional con variables ambientales (Spanish) [Cadastre and evaluation of native vegetational resources of Chile: Change monitoring. National report with environmental variables]. Santiago: National Government of Chile; 1999.
37. Lara A, Araya L, Capella J, et al. Evaluación de la destrucción y disponibilidad de los recursos forestales nativos en la VII y VIII Región (Spanish) [Evaluation of the destruction and availability of native forest resources in the VII and VIII Region]. Santiago: Informe Técnico, Comité Pro Defensa Fauna y Flora; 1989.
38. McGarigal K, Cushman S, Neel M, et al. FRAGSTATS: Spatial pattern analysis program for categorical maps [Internet]. Amherst, MA: University of Massachusetts; (Landscape Ecology Program); 2002 [accessed 2013 Aug 7]. Available from: http://www.umass.edu/landeco/research/fragstats/fragstats.html
39. IDRISI (software). Selva help system. Clark University: Clark Labs; 2012.
40. Newton AC. Biodiversity loss and conservation in fragmented forest landscapes: The forests of montane Mexico and temperate South America. Wallingford, Oxford UK: CABI; 2007. p. 1–416.
41. Cushman SA, McGarigal K, Neel MC. Parsimony in landscape metrics: strength, universality, and consistency. Ecological Indicators 2008; 8(5): 691–703.
42. Mas JF, Gao Y, Pacheco JAN. Sensitivity of landscape pattern metrics to classification approaches. Forest Ecology and Management 2010; 259(7): 1215–1224.
43. Peng J, Wang Y, Zhang Y, et al. Evaluating the effectiveness of landscape metrics in quantifying spatial patterns. Ecological Indicators 2010; 10(2): 217–223.
44. Zeng H, Wu X. Utilities of edge-based metrics for studying landscape fragmentation. Computers, Environment and Urban Systems 2005; 29(2): 159–178.
45. Aguayo M, Pauchard A, Azócar G, et al. Land use change in the south central Chile at the end of the 20th century. Understanding the spatio-temporal dynamics of the landscape. Revista Chilena de Historia Natural 2009; 82(3): 361–374.
46. Van Laake PE, Sánchez-Azofeifa GA. Focus on deforestation: Zooming in on hot spots in highly fragmented ecosystems in Costa Rica. Agriculture, Ecosystems & Environment 2004; 102: 3–15.
47. Green JMH, Larrosa C, Burgess ND, et al. Deforestation in an African biodiversity hotspot: Extent,
48. a)variation and the effectiveness of protected areas. Biological Conservation 2013; 164: 62–72.
49. Tapia-Armijos MF, Homeier J, Espinosa CI, et al. Deforestation and forest fragmentation in South Ecuador since the 1970s–Losing a hotspot of biodiversity. PloS one 2015; 10(9): 1–18.
50. Reddy CS, Sreelekshmi S, Jha C, et al. National assessment of forest fragmentation in India: Landscape indices as measures of the effects of fragmentation and forest cover change. Ecological Engineering 2013; 60: 453–464.
51. Moreira-Arce D, Vergara PM, Boutin S. Diurnal human activity and introduced species affect occurrence of carnivores in a human-dominated landscape. PloS one 2015; 10(9): 1–19.
52. Llabrés VJ. Variación de los patrones espaciales del bosque native adulto de Nothofagus de la cordillera de Nahuelbuta y su relación con la abundancia de Campephilus magallanicus (King, 1828) (Spanish) [Variation in the spatial patterns of the adult native Nothofagus forest of the Nahuelbuta mountain range and its relationship with the abundance of Campephilus magallanicus] [Unpublished thesis]. Concepción, Chile: Facultad de Ciencias Forestales, Universidad de Concepción; 2015.
53. Fontúrbel FE, Jiménez JE. Does bird species diversity vary among forest types? A local-scale test in Southern Chile. Naturwissenschaften 2014; 101(10): 855–859.
54. Moreno-García RA, Zamora R, Herrera MA. Habitat selection of endemic birds in temperate forests in a biodiversity “Hotspot”. Forest Systems 2014; 23(2): 216–224.
55. Moreira-Arce D, Vergara PM, Boutin S, et al. Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. Forest Ecology and Management 2016; 369: 135–143.
56. Rabanal FE, Alarcón D. Amphibia, Anura, Cycloramphidae, Alsodes vanzolinii (Donoso-Barros, 1974): Rediscovery in nature, latitudinal and altitudinal extension in Nahuelbuta Range, southern Chile. Check List 2010; 6(3): 362–363.
57. Soto-Azat C, Cuevas C, Flores E, et al. Conservación de Telmatobufo bullocki (sapo de Bullock) y su hábitat en los bosques degradados de Nahuelbuta (Spanish) [Conservation of Telmatobufo bullocki (Bullock’s toad) and its habitat in degraded forests of Nahuelbuta]. In: Soto-Azat C, Valenzuela-Sánches A (editors). Conservación de anfibios de Chile: Memorias del taller de conservación de anfibios para organismos públicos (Spanish) [Amphibian conservation in Chile: Proceedings of the amphibian conservation workshop for public agencies]. Santiago: Universidad Nacional Andrés Bello; 2012. p. 70–75.
58. Venegas CF. Variabilidad genética en subpoblaciones de Pitavia punctata Mol. Especie endémica amenazada del sur de Chile (Spanish) [Genetic variability in subpopulations of Pitavia punctata Mol. Threatened endemic species of southern Chile] [PhD thesis]. Concepción, Chile: Faculty of Forestry Sciences, Universidad de Concepción; 2015.
59. Carmona A, Nahuelhual L, Echeverría C, et al. Linking farming systems to landscape change: An empirical and spatially explicit study in southern Chile. Agriculture, Ecosystems & Environment 2010; 139(1-2): 40–50.
60. Uezu A, Metzger JP. Vanishing bird species in the Atlantic Forest: Relative importance of landscape configuration, forest structure and species characteristics. Biodiversity and Conservation 2011; 20(14): 3627–3643.
61. Cadotte MW, Franck R, Reza L, et al. Tree and shrub diversity and abundance in fragmented littoral forest of southeastern Madagascar. Biodiversity & Conservation 2002; 11(8): 1417–1436.
62. Patten MA, Smith-Patten BD. Testing the microclimate hypothesis: Light environment and population trends of Neotropical birds. Biological Conservation 2012; 155: 85–93.
63. Echeverría C, Gatica P, Fuentes R. Habitat edge contrast as an indicator to prioritize sites for ecological restoration at the landscape scale. Natureza & Conservagão 2013; 11: 170–175.
64. Reino L, Beja P, Osborne PE, et al. Distance to edges, edge contrast and landscape fragmentation: Interactions affecting farmland birds around forest plantations. Biological Conservation 2009; 142(4): 824–838.
65. Hooftman DA, Billeter RC, Schmid B, et al. Genetic effects of habitat fragmentation on common species of Swiss fen meadows. Conservation Biology 2004; 18(4): 1043–1051.
66. Delaveau C, Fuentes-Arce G, Ruiz E, et al. Variabilidad genética mediante AFLP en tres relictos de Gomortega keule (Molina) Baillon: Especie endémica chilena en peligro de extinción (Spanish) [Genetic variability by AFLP in three relicts of Gomortega keule (Molina) Baillon: Endangered Chilean endemic species]. Gayana Botánica 2013; 70(2): 188–194.
67. Vergara R, Gitzendanner MA, Soltis DE, et al. Population genetic structure, genetic diversity, and natural history of the South American species of Nothofagus subgenus Lophozonia (Nothofagaceae) inferred from nuclear microsatellite data. Ecology and Evolution 2014; 4(12): 2450–2471.
68. Armesto JJ, Rozzi R, Smith-Ramírez C, et al. Conservation targets in South American temperate forests. Science 1998; 282(5392): 1271–1272.
69. Simonetti J, Mella JE. Park size and the conservation of Chilean mammals. Revista Chilena de Historia Natural 1997; 70: 213–220.
DOI: https://doi.org/10.24294/sf.v4i1.1600
Refbacks
- There are currently no refbacks.
Copyright (c) 2021 Samuel Otavo, Cristian Echeverría
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
This site is licensed under a Creative Commons Attribution 4.0 International License.