Leaf litter decomposition and carbon release patterns in five homegarden trees species of Kumaun Himalaya, India

Vibhuti ., Archana Fartyal, Kiran Bargali, Surendra Singh Bargali

Article ID: 10204
Vol 8, Issue 2, 2025

VIEWS - 25 (Abstract)

Abstract


Leaf litter decomposition and carbon release patterns in five homegarden tree species of Kumaun Himalaya viz. Ficus palmata, Ficus auriculata, Ficus hispida, Grewia optiva and Celtis austalaris were investigated. The study was carried out for 210 days by using litter bag technique. In the current investigation, the duration needed for desertion of the original biomass of diverse leaf litter varied from 150 to 210 days and specifies a varying pattern of decomposition and carbon release among the species. Grewia optiva took the longest time to decompose (210 days) while Ficus hispida decomposed more quickly than rest of the species (150 days). The relative decomposition rate (RDR) was reported highest in Ficus hispida  (0.009-0.02 g-1d-1) and lowest in Grewia optiva (0.008-0.004 g-1d-1). Carbon (%) in remaining litter was in the order: Ficus auriculata (24.4 %) >Ficus hispida (24.3%) > Celtis austaralis (19.8%) > Ficus palmata (19.7%) > Grewia optiva (19%). The relationship between percentage weight loss and time elapsed showed the significant negative correlation with carbon release pattern in all the species. Releasing nutrients into the soil through the decomposition of homegarden tree residuals is a crucial ecological function that also regulates the nutrient recycling in homegarden agroforestry practices.


Keywords


Carbon release pattern; Homegarden agroforestry; Litter decomposition; Relative decomposition rate



References

  1. Isaac SR, Nair MA. Litter dynamics of six multipurpose trees in a homegarden in Southern Kerala, India. Agrofor. Syst. 2006, 67: 203–213.
  2. Kaushal R, Verma KS. Leaf Litter Decomposition in Different Agroforestry Tree Species as Influenced by Climatic Variables and Substrate Quality. XII World Forestry Congress, Quebe City, Canada, 2003.
  3. Manral V, Bargali K, Bargali SS, Karki H, Chaturvedi RK. Seasonal dynamics of soil microbial biomass C, N and P along an altitudinal gradient in central Himalaya, India. Sustainability. 2023, 15: 1651. https://doi.org/10.3390/su15021651
  4. Cotrufo MF, Galdo ID, Piermatteo D. Litter decomposition: Concepts, methods and future perspectives. 2010 DOI: 10.1017/CBO9780511711794.006.
  5. Sarkar M, Devi1A, Nath M. Foliar litter decomposition of four dominant tree species in the Hollongapar Gibbon Wildlife Sanctuary, Assam, North East India. Curr. Sci. 2016, 111(4): 747-753.
  6. Edmonds RL, Binkley D, Feller MC, Sollins P, Abee A, Myrold DD. Nutrient cycling: effects on productivity of Northwest forest ecosystems. In: Perry DA, Meurise R, Thomas B, Miller R, Boyle J, Means J, Perry CR, Powers RF (Eds.). Maintaining the long-term productivity of Pacific northwest forest ecosystems. Portland, Oregon, Timber Press; 1990. pp. 17– 35.
  7. Bargali K, Manral V, Bargali SS. Weight loss pattern in decomposing litter of Coriaria nepalensis, an actinorhizal shrub from degraded land. Indian J. Agric. Sci. 2015, 85(2): 270-273.
  8. Isaac SR, Nair MA. Biodegradation of leaf litter in the warm humid tropics of Kerala, India. Soil Biol. Biochem. 2005, 37: 1656–1664.
  9. Chapman SK, Koch GW. What type of diversity yields synergy during mixed litter decomposition in a natural forest ecosystem?. Plant Soil. 2007, 299: 153–162
  10. Rottmann N, Dyckmans J, Joergensen RG. Microbial use and decomposition of maize leaf straw incubated in packed soil columns at different depths. Europ. J. Soil Biol. 2010, 46: 27-33.
  11. Bargali SS, Singh SP, Singh RP. Pattern of weight loss and nutrients release from decomposing leaf litter in age series of euclaypt plantations. Soil Biol. Biochem. 1993, 25: 1731-1738.
  12. Upadhyay VP, Singh JS. Patterns of nutrient immobilization and release in decomposing forest litter in Central Himalaya, India. J. Ecol. 1989, 77: 127-146.
  13. Usman S, Singh SP, Rawat YS, Bargali SS. Fine root decomposition and nitrogen mineralization pattern in Quercus leucotrichophora and Pinus roxburghii forest in Central Himalaya. For. Ecol. Manag. 2000, 131: 191-199.
  14. Singh L, Singh A, Bargali SS, Upadhyay VP. Leaf litter decomposition and nutrient release pattern in multipurpose tree species of central India. J. Basic Appl. Biol. 2007, 1: 14-21.
  15. Guendehou GH, Liski SJ, Tuomi MM, Moudachirou, Sinsin B, Makipaa R. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop. Ecol. 2014, 55: 207-220.
  16. Prause J. Aporte de las principales especies forestales a la dinaUmica de la materia orgaUnica y de los nutrientes en un monte nati.o del Parque Chaquenho huU medo [MSc Thesis], Facultad de Agronomõ!a, UBA, Argentina; 1997.
  17. Bargali SS, Pandey CB, Sharma DK. Weight loss and nitrogen release pattern in leaf and wood litter of Gliricidia sepium (Jacq.) Walp. Bull. Nat. Inst. Ecol. 2006, 17: 25-29.
  18. Nath AJ, Das AK. Decomposition dynamics of three priority bamboo species of homegardens in Barak Valley, Northeast India. Trop. Ecol. 2011, 52(3): 325-330.
  19. Mafongoya PL, Giller KE, Palm CA. Decomposition and nitrogen release patterns of tree prunings and litter. Agrofor. Syst. 1998, 38: 77–97.
  20. Bargali K. Comparative participation of rural women in agroforestry home gardens in Kumaun Himalaya, Uttarakhand, India. Asian J. Agric. Exten. Econ. Sociol. 2015, 6(1): 16-22.
  21. Vibhuti, Karki H, Bargali K. Assessment of ecosystem services in Home Garden systems in Kumaun Himalaya, India. In: Prakash P, Singh NK, Prakash A (Eds). Ecological Ignorance in Development Raising Disastrous Possibilities. 2017, pp. 55-69.
  22. Vibhuti, Bargali K, Bargali SS. Effects of homegarden size on floristic composition and diversity along an altitudinal gradient in Central Himalaya, India. Curr. Sci. 2018, 114(12): 2494-2503.
  23. Petersen RC, Cummins KW. Leaf processing in a woodland stream. Fresh Water Biol. 1974, 4: 243- 368.
  24. Walkley A, Black IA. An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37: 29-37.
  25. Sendecor GW, Cochran WG. Statistical methods. 6th (ed), Iowa State Univ. Press. Ames. Iowa, USA, 1969.
  26. Bockheim JG, Jepsen EA, Heisey DM. Nutrient dynamics in decomposing leaf litter of four tree species on a sandy soil in northwestern Wisconsin. Can. J. For. Res. 1991, 21: 803–812.
  27. Pandey R, Bargali SS, Bargali K, Karki H, Chaturvedi RK. Dynamics of nitrogen mineralization and fine root decomposition in sub-tropical Shorea robusta Gaertner f. forests of Central Himalaya, India. Sci. Total Environ. 2024, 921. https://doi.org/10.1016/j.scitotenv.2024.170896
  28. Barbhuiya AR, Arunachalam A, Nath PC, Khan ML, Arunachalam K. Leaf litter decomposition of dominant tree species of Namdapha National Park, Arunachal Pradesh, northeast India. J. For. Res. 2008, 13(1): 25–34.
  29. Padalia K, Parihaar RS, Bhakuni N, Kapkoti B. Leaf litter decomposition of two central Himalayan oaks. Curr. World Environ. 2015, 10(2): 509-516.
  30. Dhanya B, Viswanath S, Purushothaman S. Decomposition and nutrient release dynamics of Ficus benghalensis L. litter in traditional agroforestry systems of Karnataka, Southern India. ISRN. Fore. 2013, 1–7. http://doi.org/10.1155/2013/524679
  31. Hasanuzzaman M, Hossain M. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh. Int. J. For. Res. 2014, 1-5 DOI: 10.1155/2014/805940.
  32. Awasthi P, Bargali K, Bargali SS, Khatri K. Nutrient return through decomposing Coriaria nepalensis litter in degraded hills of Kumaun Himalaya, India. Fron. For. Glob. Change. 2022, 5: 1008939.
  33. Taylor BR, Jones HG. Litter decomposition under snow cover in a balsam fir forest. Can. J. For. Res. 1990, 68: 112-120
  34. Bargali K, Manral V, Padalia K, Bargali SS, Upadhyay VP. Effect of vegetation type and season on microbial biomass carbon in Central Himalayan forest soils, India. Catena. 2018, 171: 125–135. https://doi.org/10.1016/j.catena.2018.07.001
  35. Bargali SS, Shukla K, Singh L, Ghosh L, Lakhera ML. Leaf litter decomposition and nutrient dynamics in four tree species of Dry Deciduous Forest. Trop. Ecol. 2018, 56(2): 191-200.
  36. Swift MJ, Smith AR, Perfect JJ. Decomposition and mineral nutrient dynamics of plant litter regeneration bush fallow in sub-humid tropical Nigeria. J. Ecol. 1981, 69: 981-995.
  37. Bargali SS. Litter fall, nutrient return and leaf decomposition in an age series of eucalypt plantations in Central Himalaya. Oecol. Mont. 1995, 4: 31–8.
  38. Padalia K, Bargali SS, Bargali K, Khulbe K. Microbial biomass carbon and nitrogen in relation to cropping systems in Centtral Himalaya, India. Curr. Sci. 2018, 115(9): 1741-1750.
  39. Singh RK, Dutta RK, Agrawal M. Litter decomposition and nutrient release in relation to atmospheric deposition of S and N in a dry tropical region. Pedobiol. 2004, 48: 305-311.
  40. Mungai NW, Motavalli PP. Litter quality effects on soil carbon and nitrogen dynamics in temperate alley cropping systems. Appl. Soil Ecol. 2006, 31: 32–42.
  41. Hattenschwiler S, Jorgensen HB. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 2010, 98(4): 754–763. http://doi.org/10.1111/j.1365-2745.2010.01671.x
  42. Semwal S. Studies on phytosociology, diversity patterns and competition along an altitudinal gradient in a part of Lesser Himalaya in Garhwal, Uttarakhand [Ph.D. Thesis]. H.N.B. Garhwal University, Srinagar Garhwal; 2006.
  43. Anthwal A. Carbon Pool and Flux in the Morainic and Alpine Ecosystem of Central Himalaya [Ph. D. Thesis]. H.N.B. Garhwal University, Srinagar Garhwal; 2006.
  44. Hobbie SE, Vitousek PM. Nutrient limitation of decomposition in Hawaiian forests. Ecology. 2000, 81: 1867-1877.


DOI: https://doi.org/10.24294/sf10204

Refbacks

  • There are currently no refbacks.


Copyright (c) 2025 Vibhuti ., Archana Fartyal, Kiran Bargali, Surendra Singh Bargali

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This site is licensed under a Creative Commons Attribution 4.0 International License.