Role of Oxygen Pressure on the Surface Properties of Polycrystalline Cu2O Films Deposited By Thermal Evaporator

I. A. Khan1, S. A. Hussain1, A. S. Nadeem1, M. Saleem2, A. Hassnain3, R. Ahmad3

Article ID: 656
Vol 1, Issue 1, 2018

VIEWS - 117 (Abstract) 88 (PDF)

Abstract


Polycrystalline cuprous oxide (P-Cu2O) films are deposited on Cu substrates for various (0.2, 0.3 and 0.4 mbar) oxygen pressures (OP) by thermal evaporator. The XRD pattern shows the development of Cu (200), Cu2O (200) and Cu2O (311) diffraction planes which confirms the deposition of P-Cu2O films. The intensity of Cu2O (200) and Cu2O (311) planes is associated with the increase of OP. The crystallite size and microstrains developed in (200) and (311) planes are found to be 19.31, 21.18, 11.32 nm; 22.04, 23.11, 12.08 nm and 0.113, 0.103, 0.193; 0.099, 0.096, 0.181 with increasing OP respectively. The d-spacing and lattice constant are found to be 0.210, 0.128 nm and 0.421, 0.425 nm respectively. The bond length of P-Cu2O film is found to be 0.255 nm. The crystallites/unit area of these planes is found to be 12.21, 7.46, 45.16 nm-2 and 8.21, 5.75, 37.16 nm-2 respectively. The texture coefficients of these planes are found to be 1.22, 1.26, 1.11 and 0.78, 0.74 and 0.56 with increasing OP respectively. The O and Cu contents are found to be 5.31, 5.92, 6.94 wt % and 83.01, 82.44, 80.65 wt % respectively. The thickness and growth rate of P-Cu2O films are found to be 87.9, 71.9, 65.5 nm and 17.6, 14.2, 13.1 (nm min-1) with increasing OP respectively. The SEM microstructures reveal the formations of patches of irregular shapes, rounded nano-particles, clouds of nano-particles and their distribution depend on the increasing OP. The refractive index and energy band gap of P-Cu2O films are found to be 1.96, 1.89, 1.92 and 2.47, 2.44 and 2.25 eV with increasing OP respectively.


Keywords


Weight Fraction; Film Thickness; Energy Band Gap; Crystallites; Lattice Parameters; SEM

Full Text:

PDF


References


1. B. Balamurugan, and B. R. Mehta, “Nanocrystalline Thin Films, Optical Properties,

2. Structural Properties, X-Ray Diffraction,” Thin Solid Films, vol. 396, pp. 90-96, 2001.

3. A. Karapetyan, A. Reymers, S. Giorgio, C. Fauquet, L. Sajti, S. Nitsche, M. Nersesyan, V

4. Gevorgyan, and W Marine “Cuprous oxide thin films prepared by thermal oxidation of

5. copper layer, Morphological and optical properties” Journal of Luminescence, vol. 159,

6. pp. 325-332, 2015.

7. J. F. Pierson, A. T. Keck, and A. Billard, “Cuprite, paramelaconite and tenorite films

8. deposited by reactive magnetron sputtering” Appl. Surf. Sci., vol. 210, pp. 359-367,

9.

10. A. R. Rastkar, A. R. Niknam, and B. Shokri, Characterization of copper oxide nanolayers

11. deposited by direct current magnetron sputtering, Thin Solid Films, vol. 517, pp. 5464-

12. , 2009.

13. A. E. Rakshani, “Preparation, characteristics and photovoltaic properties of cuprous

14. oxide; a review” Solid State Electronics, vol. 29, pp. 7-17, 1986.

15. F. Marabelli, G. B. Parraviciny, and F. S. Drioli, “Optical gap of CuO,” Phys. Rev. B,

16. vol. 52, 1433, 1995.

17. J. Ghijsen, L. H. Tjeng, J. V. Elp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T.

18. Czyzyk, “Electronic structure of Cu2O and CuO,” Phy. Rev. B, vol. 38, pp. 11322, 1988.

19. F. P. Koffyberg, and F. A. Benko, “A photoelectrochemical determination of the position

20. of the conduction and valence band edges of p-type CuO,” J. Appl. Phys., vol. 53, pp.

21. , 1982.

22. S. Ghosh, D. K. Avasthi, P. Shah, V. Ganesan, A. Gupta, D. Sarangi, R. Bhattacharya,

23. and W. Assmann, Deposition of thin films of different oxides of copper by RF reactive

24. sputtering and their characterization,: Vacuum, vol. 57, pp. 377-385, 2000.

25. S. Ishizuka, S. Kato, Y. Okamoto, T. Sakurai, K. Akimoto, N. Fujiwara, and H.

26. Kobayashi, “Passivation of defects in polycrystalline Cu2O thin films by hydrogen or

27. cyanide treatment,” Appl. Surf. Sci., vol. 216, pp. 94-97, 2003.

28. M. Wautelet, A. Roos, and F. Hanus, Optical characteristics of laser-synthesised

29. extended thin films of copper oxide,” J. Phys. D: Appl. Phys., vol. 23, pp. 991, 1990.

30. L. S. Huang, S. G. Yang, T. Li, B. X. Gu, Y. W. Du, Y. N. Lu, and S. Z. Shi,

31. “Preparation of large-scale cupric oxide nanowires by thermal evaporation method,” J.

32. Cryst. Growth, 260, pp. 130-135, 2004.

33. C. A. N. Fernando, and S. K. Wetthasinghe, “Investigation of photoelectrochemical

34. characteristics of n-type Cu2O films,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 299-308,

35.

36. L. Armelao, D. Barreca, M. Bertapelle, Y. Bottaro, C. Sada, and E. Tondello, “A sol–gel

37. approach to nanophasic copper oxide thin films,” Thin Solid Films, vol. 442, pp. 48-52,

38.

39. T. Mahalingam, J. S. P. Chitra, J. P. Chu, and P. Sebastian, Preparation and

40. microstructural studies of electrodeposited Cu2O thin films,” J. Mater. Lett. Vol. 58, pp.

41. -1807, 2004.

42. T. Minami, H. Tanaka, T. Shimakawa, J. Miyata, H. Sato, “High-Efficiency Oxide

43. Heterojunction Solar Cells Using Cu2O Sheets,” Jpn.J. Appl. Phys. Vol. 43, pp. L917,

44.

45. T. Maruyama, “Copper Oxide Thin Films Prepared from Copper Dipivaloylmethanate

46. and Oxygen by Chemical Vapor Deposition,” Jpn. J. Appl. Phys. Vol. 37, pp. 4099, 1998.

47. K. Santra, C. K. Sarkar, M. K. Mukherjee, and B. Ghosh, “Copper oxide thin films

48. grown by plasma evaporation method,” Thin Solid Films, vol. 213, pp. 226-229, 1992.

49. R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, Effects of oxygen ion

50. energy on the growth of CuO films by molecular beam epitaxy using mass-separated

51. low-energy O+ beams,” J. Mater. Res. Vol. 9, pp. 1280-1283, 1994.

52. I. A. Khan, M. Noor, A. Rehman, A. Farid, M. A. K. Shahid, and M. Shafiq, “Role of

53. evaporation time on the structural and optical properties of ZnO films deposited by

54. thermal evaporator,” Eur. Phys. J. Appl. Phys., vol. 72, pp. 30302, 2015.

55. G. K. Williamson, and R. E. Smallman, “Dislocation densities in some annealed and

56. cold-worked metals from measurements on the X-ray debye-scherrer spectrum,”

57. Philosophical Magazine vol. 1, pp. 34-46, 1956

58. X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, “Ferroelectric and dielectric

59. properties of Li-doped ZnO thin films prepared bypulsed laser deposition,” Appl. Phys.

60. A, vol. 77, pp. 561-565, 2003.

61. Z. R. Khan, M. Zulfequar, and M. S. Khan, “The Effect of ZnO Thin Film and Its

62. Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method,” Mat. Sci. &

63. Engg. B, vol. 174, 145-149, 2010.

64. Z. R. Khan, M. S. Khan, M. Zulfequar, and M. S. Khan, ‘Optical and structural properties

65. of ZnO thin films fabricated by sol-gel method,” Mat. Sci. & Appl., vol. 2, pp. 340-345,

66.

67. E. Djurado, P. Bouvier, and G. Lucazeau, “Crystallite Size Effect on the Tetragonal-

68. Monoclinic Transition of Undoped Nanocrystalline Zirconia Studied by XRD and Raman

69. Spectrometry,” J. of Solid State Chemistry, vol. 149, pp. 399-407, 2000.

70. B. D. Cullity, and S. R. Stock, Elements of X-ray Diffraction. Prentice Hall, New Jersey,

71.

72. R. Mariappan, M. Ragavendar, and V. Ponnuswamy, “Growth and characterization of

73. chemical bath deposited Cd1−x ZnxS thin films,” J. Alloys Compd., vol. 509, pp. 7337-

74. , 2011.

75. M. H. Mamat, M. Z. Sahdan, Z. Khusaimi, A. Z. Ahmed, S. Abdulah, and M. Rusop,

76. “Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photo conductive sensor applications,” Opt. Mater., vol. 32, pp. 696-699, 2010.

77. A. Rizzo, M. A. Signore, M. F. D. Riccardis, L. Capodieci, D. Dimaio, and T. Nocco,

78. “Influence of growth rate on the structural and morphological properties of TiN, ZrN and

79. TiN/ZrN multilayers,” Thin Solid Films, vol. 515, pp. 6665-6671, 2007.

80. I. A. Khan, M. Hassan, T. Hussain, R. Ahmad, M. Zakaullah, and R. S. Rawat,

81. “Synthesis of nano-crystalline zirconium aluminium oxynitride (ZrAlON) composite

82. films by dense plasma Focus device,” Applied Surface Science, vol. 255, pp. 6132-6140,

83.

84. F. K. Mugwang’a, P. K. Karimi, W. K. Njoroge, O. Omayio, and S. M. Waita, Optical

85. characterization of Copper Oxide thin films prepared by reactive dc magnetron sputtering

86. for solar cell applications,” Int. J. Thin Film Sci. Tec., vol. 2, pp. 15-24, 2013.

87. K. Kawaguchi, R. Kita, M. Nishiyama, and T. Morishita, “Molecular beam epitaxy

88. growth of CuO and Cu2O films with controlling the oxygen content by the flux ratio of

89. Cu/O(+,”Journal of Crystal Growth vol. 143, pp. 221-226, 1994.

90. K. P. Muthe, J. C. Vyas, S. N. Narang, D. K. Aswal, S. K. Gupta, D. Bhattacharya, R.

91. Pinto, G. P. Kothiyal, and S. C. Sabharwal, “A study of the CuO phase formation during

92. thin film deposition by molecular beam epitaxy,” Thin Solid Films, vol. 324, pp. 37-43,1998.


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Creative Commons License

This site is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.