Synthetic composite membranes and their manifold applications: A comprehensive review
Vol 7, Issue 2, 2024
VIEWS - 696 (Abstract) 75 (PDF)
Abstract
Synthetic membranes play a crucial role in a wide range of separation processes, including dialysis, electrodialysis, ultrafiltration, and pervaporation, with growing interest in synthetic emulsion membranes due to their precision, versatility, and ion exchange capabilities. These membranes enable tailored solutions for specific applications, such as water and gas separation, wastewater treatment, and chemical purification, by leveraging their multi-layered structures and customizable properties. Emulsion membrane technology, particularly in pressure-driven methods like reverse osmosis (RO) and nanofiltration (NF), has shown great potential in overcoming traditional challenges, such as fouling and energy inefficiency, by improving filtration efficiency and selectivity. This review explores the latest advancements in emulsion membrane development, their adaptability to various industrial needs, and their contribution to addressing long-standing limitations in membrane separation technologies. The findings underscore the promise of emulsion membranes in advancing industrial processes and highlight their potential for broader applications in water treatment, environmental management, and other key sectors.
Keywords
Full Text:
PDFReferences
1. Li Q, Wen C, Yang J, et al. Zwitterionic Biomaterials. Chemical Reviews. 2022; 122(23): 17073-17154. doi: 10.1021/acs.chemrev.2c00344
2. Drioli E, Romano M. Progress and New Perspectives on Integrated Membrane Operations for Sustainable Industrial Growth. Industrial & Engineering Chemistry Research. 2001; 40(5): 1277-1300. doi: 10.1021/ie0006209
3. De Bartolo L, Curcio E, Drioli E. Membrane systems: for bioartificial organs and regenerative medicine. Walter de Gruyter GmbH & Co KG; 2017.
4. Legallais C, Kim D, Mihaila SM, et al. Bioengineering Organs for Blood Detoxification. Advanced Healthcare Materials. 2018; 7(21). doi: 10.1002/adhm.201800430
5. Chorsi MT, Curry EJ, Chorsi HT, et al. Piezoelectric Biomaterials for Sensors and Actuators. Advanced Materials. 2018; 31(1). doi: 10.1002/adma.201802084
6. Salatino JW, Ludwig KA, Kozai TDY, et al. Glial responses to implanted electrodes in the brain. Nature Biomedical Engineering. 2017; 1(11): 862-877. doi: 10.1038/s41551-017-0154-1
7. Nunes SP, Culfaz-Emecen PZ, Ramon GZ, et al. Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes. Journal of Membrane Science. 2020; 598: 117761. doi: 10.1016/j.memsci.2019.117761
8. Yang Z, Zhou Y, Feng Z, et al. A Review on Reverse Osmosis and Nanofiltration Membranes for Water Purification. Polymers. 2019; 11(8): 1252. doi: 10.3390/polym11081252
9. Osada Y, Nakagawa T. Membrane science and technology. CRC Press; 1992.
10. Dell RM, Rand DAJ. Energy storage—a key technology for global energy sustainability. Journal of power sources. 2001; 100: 2-17.
11. Dudchenko N, Pawar S, Perelshtein I, et al. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. Materials. 2022; 15(7): 2601. doi: 10.3390/ma15072601
12. Baker RW. Membrane technology and applications. John Wiley & Sons; 2023.
13. Goh PS, Ismail AF. A review on inorganic membranes for desalination and wastewater treatment. Desalination. 2018; 434: 60-80. doi: 10.1016/j.desal.2017.07.023
14. Kayvani Fard A, McKay G, Buekenhoudt A, et al. Inorganic Membranes: Preparation and Application for Water Treatment and Desalination. Materials. 2018; 11(1): 74. doi: 10.3390/ma11010074
15. Agboola O, Fayomi OSI, Ayodeji A, et al. A Review on Polymer Nanocomposites and Their Effective Applications in Membranes and Adsorbents for Water Treatment and Gas Separation. Membranes. 2021; 11(2): 139. doi: 10.3390/membranes11020139
16. Lau WJ, Lai GS, Li J, et al. Development of microporous substrates of polyamide thin film composite membranes for pressure-driven and osmotically-driven membrane processes: A review. Journal of Industrial and Engineering Chemistry. 2019; 77: 25-59. doi: 10.1016/j.jiec.2019.05.010
17. Alihemati Z, Hashemifard SA, Matsuura T, et al. Current status and challenges of fabricating thin film composite forward osmosis membrane: A comprehensive roadmap. Desalination. 2020; 491: 114557. doi: 10.1016/j.desal.2020.114557
18. Goh PS, Ismail AF, Sanip SM, et al. Recent advances of inorganic fillers in mixed matrix membrane for gas separation. Separation and Purification Technology. 2011; 81(3): 243-264. doi: 10.1016/j.seppur.2011.07.042
19. Yazid AF, Mukhtar H, Nasir R, et al. Incorporating Carbon Nanotubes in Nanocomposite Mixed-Matrix Membranes for Gas Separation: A Review. Membranes. 2022; 12(6): 589. doi: 10.3390/membranes12060589
20. Li Y, He G, Wang S, et al. Recent advances in the fabrication of advanced composite membranes. Journal of Materials Chemistry A. 2013; 1(35): 10058. doi: 10.1039/c3ta01652h
21. Aziz T, Li W, Zhu J, et al. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties. International Journal of Biological Macromolecules. 2024; 278: 134695. doi: 10.1016/j.ijbiomac.2024.134695
22. Li C, Sun W, Lu Z, et al. Ceramic nanocomposite membranes and membrane fouling: A review. Water Research. 2020; 175: 115674. doi: 10.1016/j.watres.2020.115674
23. Osman AI, Chen Z, Elgarahy AM, et al. Membrane Technology for Energy Saving: Principles, Techniques, Applications, Challenges, and Prospects. Advanced Energy and Sustainability Research. 2024; 5(5). doi: 10.1002/aesr.202400011
24. Wang LK, Chen JP, Hung YT, et al. Membrane and Desalination Technologies. Humana Press; 2011. doi: 10.1007/978-1-59745-278-6
25. Khulbe K, Matsuura T. Synthetic membrane characterisation–a review: part I. Membrane Technology. 2017; 7-12.
26. Khulbe KC, Feng C, Matsuura T. The art of surface modification of synthetic polymeric membranes. Journal of Applied Polymer Science. 2009; 115(2): 855-895. doi: 10.1002/app.31108
27. Wang H, Wang M, Liang X, et al. Organic molecular sieve membranes for chemical separations. Chemical Society Reviews. 2021; 50(9): 5468-5516. doi: 10.1039/d0cs01347a
28. Bohr SJ, Wang F, Metze M, et al. State-of-the-art review of porous polymer membrane formation characterization—How numerical and experimental approaches dovetail to drive innovation. Frontiers in Sustainability. 2023; 4. doi: 10.3389/frsus.2023.1093911
29. Adu-Ahyiah M, Anku RE. Small scale wastewater treatment in Ghana (a scenerio). Retrieved; 2010.
30. Al Aani S, Mustafa TN, Hilal N. Ultrafiltration membranes for wastewater and water process engineering: A comprehensive statistical review over the past decade. Journal of Water Process Engineering. 2020; 35: 101241. doi: 10.1016/j.jwpe.2020.101241
31. Iwuozor KO. Prospects and Challenges of Using Coagulation-Flocculation method in the treatment of Effluents. Advanced Journal of Chemistry-Section A. 2019: 105-127. doi: 10.29088/sami/ajca.2019.2.105127
32. de Peón CM. Organic micropollutants in reverse osmosis water treatments, presence and rejection. Universitat Rovira i Virgili; 2015.
33. Fritzmann C, Löwenberg J, Wintgens T, et al. State-of-the-art of reverse osmosis desalination. Desalination. 2007; 216(1-3): 1-76. doi: 10.1016/j.desal.2006.12.009
34. Azapagic A, Emsley A, Hamerton L. Polymers, the Environment and Sustainable Development. Published online February 14, 2003. doi: 10.1002/0470865172
35. Maranchi JP, Trexler MM, Guo Q, et al. Fibre-reinforced hydrogels with high optical transparency. International Materials Reviews. 2014; 59(5): 264-296. doi: 10.1179/1743280414y.0000000032
36. Darwish M, Hassabou AH, Shomar B. Using Seawater Reverse Osmosis (SWRO) desalting system for less environmental impacts in Qatar. Desalination. 2013; 309: 113-124. doi: 10.1016/j.desal.2012.09.026
37. Najib S, Fadili A, Mehdi K, et al. Salinization process and coastal groundwater quality in Chaouia, Morocco. Journal of African Earth Sciences. 2016; 115: 17-31. doi: 10.1016/j.jafrearsci.2015.12.010
38. Ghernaout D. Short Communication: Requiring Reverse Osmosis Membranes Modifications – An Overview. American Journal of Chemical Engineering. 2017; 5(4): 81. doi: 10.11648/j.ajche.20170504.1
39. Jaspal D, Malviya A, El Allaoui B, et al. Emerging advances of composite membranes for seawater pre-treatment: a review. Water Science & Technology. 2023; 88(2): 408-429. doi: 10.2166/wst.2023.220
40. Liu G. A study on sustainable urban water management in small and medium sized cities in China. Dortmund Technische Universität, Diss; 2012.
41. Prest EI, Hammes F, van Loosdrecht MCM, et al. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges. Frontiers in Microbiology. 2016; 7. doi: 10.3389/fmicb.2016.00045
42. Schaefer DH, Thiros SA, Rosen MR. Ground-water quality in the carbonate-rock aquifer of the Great Basin, Nevada and Utah, 2003. Scientific Investigations Report. 2005. doi: 10.3133/sir20055232
43. Tareemi AA, Sharshir SW. A state-of-art overview of multi-stage flash desalination and water treatment: Principles, challenges, and heat recovery in hybrid systems. Solar Energy. 2023; 266: 112157. doi: 10.1016/j.solener.2023.112157
44. Faroon M, ALSaad Z, Albadran F, et al. Review on Technology-Based on Reverse Osmosis. Anbar Journal of Engineering Sciences. 2023; 14(1): 89-97. doi: 10.37649/aengs.2023.139414.1047
45. Buonomenna MG. Membrane processes for a sustainable industrial growth. RSC Advances. 2013; 3(17): 5694. doi: 10.1039/c2ra22580h
46. Judd S, Jefferson B. Membranes for industrial wastewater recovery and re-use. Elsevier; 2003.
47. Zhang S, Zhang W, Zhou X, et al. Interaction of water mists with bibulous filter media and hygroscopic particles in pressure drop jump of fibrous filter media. Chemical Engineering Science. 2024; 285: 119544. doi: 10.1016/j.ces.2023.119544
48. Tian X, Yu H, Yang J, et al. Preparation of reverse osmosis membrane with high permselectivity and anti-biofouling properties for desalination. Frontiers of Environmental Science & Engineering. 2021; 16(7). doi: 10.1007/s11783-021-1497-0
49. Milad G, Kijoon L, Yujuan H, et al. Selective laser melting of 304L stainless steel: Role of volumetric energy density on the microstructure, texture and mechanical properties. Additive Manufacturing. 2020; 32: 101011Kearns VR. Surface engineering of dental implants using a deposition of nano-features. The University of Liverpool (United Kingdom); 2007.
50. Jafari M, Rezvanpour A. Upconversion nano-particles from synthesis to cancer treatment: A review. Advanced Powder Technology. 2019; 30(9): 1731-1753. doi: 10.1016/j.apt.2019.05.027
51. Kumar S, Ye F, Dobretsov S, et al. Nanocoating Is a New Way for Biofouling Prevention. Frontiers in Nanotechnology. 2021; 3. doi: 10.3389/fnano.2021.771098
52. Shi X, Tal G, Hankins NP, et al. Fouling and cleaning of ultrafiltration membranes: A review. Journal of Water Process Engineering. 2014; 1: 121-138. doi: 10.1016/j.jwpe.2014.04.003
53. Goosen MFA, Sablani SS, Al‐Hinai H, et al. Fouling of Reverse Osmosis and Ultrafiltration Membranes: A Critical Review. Separation Science and Technology. 2005; 39(10): 2261-2297. doi: 10.1081/ss-120039343
54. Yuan Z, Olsson G, Cardell-Oliver R, et al. Sweating the assets – The role of instrumentation, control and automation in urban water systems. Water Research. 2019; 155: 381-402. doi: 10.1016/j.watres.2019.02.034
55. Liu R. Synthesis and Characterization of Novel Polybenzimidazoles and Post-modifications for Membrane Separation Applications. Virginia Tech; 2018.
56. Zhang R, Liu Y, He M, et al. Antifouling membranes for sustainable water purification: strategies and mechanisms. Chemical Society Reviews. 2016; 45(21): 5888-5924. doi: 10.1039/c5cs00579e
57. Mohammad AW, Teow YH, Ang WL, et al. Nanofiltration membranes review: Recent advances and future prospects. Desalination. 2015; 356: 226-254. doi: 10.1016/j.desal.2014.10.043
58. Zhu L, Liu X, Lund R. Graduate Research and Discovery Symposium (GRADS). Clemson University; 2018.
59. He X, Hägg MB. Membranes for Environmentally Friendly Energy Processes. Membranes. 2012; 2(4): 706-726. doi: 10.3390/membranes2040706
60. Vallet-Regí M. Mesoporous Silica Nanoparticles: Their Projection in Nanomedicine. ISRN Materials Science. 2012; 2012: 1-20. doi: 10.5402/2012/608548
61. Roorda N. Fundamentals of Sustainable Development. Routledge; 2020. doi: 10.4324/9781003052517
62. Kertik A, Wee LH, Pfannmöller M, et al. Highly selective gas separation membrane using in situ amorphised metal–organic frameworks. Energy & Environmental Science. 2017; 10(11): 2342-2351. doi: 10.1039/c7ee01872j
63. Kimble MC, White RE, Tsou Y, et al. Estimation of the Diffusion Coefficient and Solubility for a Gas Diffusing Through a Membrane. Journal of The Electrochemical Society. 1990; 137(8): 2510-2514. doi: 10.1149/1.2086977
64. Lau CH, Li P, Li F, et al. Reverse-selective polymeric membranes for gas separations. Progress in Polymer Science. 2013; 38(5): 740-766. doi: 10.1016/j.progpolymsci.2012.09.006
65. Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. Membranes. 2020; 10(10): 297. doi: 10.3390/membranes10100297
66. Olabi AG, Onumaegbu C, Wilberforce T, et al. Critical review of energy storage systems. Energy. 2021; 214: 118987. doi: 10.1016/j.energy.2020.118987
67. Xu J, Cai X, Cai S, et al. High‐Energy Lithium‐Ion Batteries: Recent Progress and a Promising Future in Applications. Energy & Environmental Materials. 2023; 6(5). doi: 10.1002/eem2.12450
68. Badwal SPS, Giddey SS, Munnings C, et al. Emerging electrochemical energy conversion and storage technologies. Frontiers in Chemistry. 2014; 2. doi: 10.3389/fchem.2014.00079
69. Rashidi S, Karimi N, Sunden B, et al. Progress and challenges on the thermal management of electrochemical energy conversion and storage technologies: Fuel cells, electrolysers, and supercapacitors. Progress in Energy and Combustion Science. 2022; 88: 100966. doi: 10.1016/j.pecs.2021.100966
70. Ogungbemi E, Wilberforce T, Ijaodola O, et al. Review of operating condition, design parameters and material properties for proton exchange membrane fuel cells. International Journal of Energy Research. 2020; 45(2): 1227-1245. doi: 10.1002/er.5810
71. Jiao K, Xuan J, Du Q, et al. Designing the next generation of proton-exchange membrane fuel cells. Nature. 2021; 595(7867): 361-369. doi: 10.1038/s41586-021-03482-7
72. Wang Y, Chen KS, Mishler J, et al. A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy. 2011; 88(4): 981-1007. doi: 10.1016/j.apenergy.2010.09.030
73. de Bruijn FA, Makkus RC, Mallant RK, et al. Materials for state-of-the-art PEM fuel cells, and their suitability for operation above 100 C. Advances in fuel cells. 2007; (1): 235-336.
74. Zahid M, Savla N, Pandit S, et al. Microbial desalination cell: Desalination through conserving energy. Desalination. 2022; 521: 115381. doi: 10.1016/j.desal.2021.115381
75. Prifti H, Parasuraman A, Winardi S, et al. Membranes for Redox Flow Battery Applications. Membranes. 2012; 2(2): 275-306. doi: 10.3390/membranes2020275
76. He X, Bresser D, Passerini S, et al. The passivity of lithium electrodes in liquid electrolytes for secondary batteries. Nature Reviews Materials. 2021; 6(11): 1036-1052. doi: 10.1038/s41578-021-00345-5
77. Cunha Á, Martins J, Rodrigues N, et al. Vanadium redox flow batteries: a technology review. International Journal of Energy Research. 2014; 39(7): 889-918. doi: 10.1002/er.3260
78. Zagorodni AA. Ion exchange materials: properties and applications. Elsevier; 2006.
79. SenGupta AK. Ion exchange in environmental processes: Fundamentals, applications and sustainable technology. John Wiley & Sons; 2017.
80. Liu H, Zhang X, Xu N, et al. Progress of One-Dimensional SiC Nanomaterials: Design, Fabrication and Sensing Applications. Nanomaterials. 2024; 14(2): 187. doi: 10.3390/nano14020187
81. Zhang Y, Li L, Su H, et al. Binary metal oxide: advanced energy storage materials in supercapacitors. Journal of Materials Chemistry A. 2015; 3(1): 43-59. doi: 10.1039/c4ta04996a
82. Saikia BK, Benoy SM, Bora M, et al. A brief review on supercapacitor energy storage devices and utilization of natural carbon resources as their electrode materials. Fuel. 2020; 282: 118796. doi: 10.1016/j.fuel.2020.118796
83. Schnell J, Günther T, Knoche T, et al. All-solid-state lithium-ion and lithium metal batteries—paving the way to large-scale production. Journal of Power Sources. 2018; 382: 160-175. doi: 10.1016/j.jpowsour.2018.02.062
84. Yan J, Li S, Lan B, et al. Rational Design of Nanostructured Electrode Materials toward Multifunctional Supercapacitors. Advanced Functional Materials. 2019; 30(2). doi: 10.1002/adfm.201902564
85. Zakrzewska-Trznadel G. Membrane processes for environmental protection: applications in nuclear technology. Nukleonika. 2006; (51): 101-111.
86. Khayet M. Treatment of radioactive wastewater solutions by direct contact membrane distillation using surface modified membranes. Desalination. 2013; 321: 60-66. doi: 10.1016/j.desal.2013.02.023
87. Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment. 2018; 633: 206-219. doi: 10.1016/j.scitotenv.2018.03.161
88. Nazir A, Khan K, Maan A, et al. Membrane separation technology for the recovery of nutraceuticals from food industrial streams. Trends in Food Science & Technology. 2019; 86: 426-438. doi: 10.1016/j.tifs.2019.02.049
89. Anis SF, Hashaikeh R, Hilal N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination. 2019; 452: 159-195. doi: 10.1016/j.desal.2018.11.006
90. Sarbatly R, Sariau J, Krishnaiah D. Recent Developments of Membrane Technology in the Clarification and Concentration of Fruit Juices. Food Engineering Reviews. 2023; 15(3): 420-437. doi: 10.1007/s12393-023-09346-2
91. Davies M, Hamilton C, Murphy S, et al. Polymer membranes in clinical sensor applications: I. An overview of membrane function. Biomaterials. 1992; (13): 971-978.
92. Said N, Lau WJ, Ho YC, et al. A Review of Commercial Developments and Recent Laboratory Research of Dialyzers and Membranes for Hemodialysis Application. Membranes. 2021; 11(10): 767. doi: 10.3390/membranes11100767
93. Mostafavi AH, Mishra AK, Ulbricht M, et al. Oxygenation and membrane oxygenators: emergence, evolution and progress in material development and process enhancement for biomedical applications. Journal of Membrane Science and Research. 2021; (7): 230-259.
94. Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue‐Specific Implications for Biocompatibility. Advanced Healthcare Materials. 2022; 11(9). doi: 10.1002/adhm.202102087
95. Radu ER, Voicu SI, Thakur VK. Polymeric Membranes for Biomedical Applications. Polymers. 2023; 15(3): 619. doi: 10.3390/polym15030619
96. Satel S. Desperately seeking a kidney. The New York Times. 2007; 16.
97. Das R, Nag S, Banerjee P. Electrochemical Nanosensors for Sensitization of Sweat Metabolites: From Concept Mapping to Personalized Health Monitoring. Molecules. 2023; 28(3): 1259. doi: 10.3390/molecules28031259
98. Pusch W, Walch A. Synthetic Membranes—Preparation, Structure, and Application. Angewandte Chemie International Edition in English. 1982; 21(9): 660-685. doi: 10.1002/anie.198206601
99. Cooley DA. Con: beating-heart surgery for coronary revascularization: is it the most important development since the introduction of the heart-lung machine? The Annals of thoracic surgery. 2000; (70): 1779-1781.
100. Sweetser S. Gastrointestinal manifestations of systemic diseases. Yamada’s Textbook of Gastroenterology. Published online February 18, 2022: 2231-2273. doi: 10.1002/9781119600206.ch111
101. Oprea D, Sanz CG, Barsan MM, et al. PC-12 Cell Line as a Neuronal Cell Model for Biosensing Applications. Biosensors. 2022; 12(7): 500. doi: 10.3390/bios12070500
102. Goodman LS. Goodman and Gilman’s the pharmacological basis of therapeutics. McGraw-Hill New York; 1996.
103. Herman PM, Craig BM, Caspi O. Is complementary and alternative medicine (CAM) cost-effective? a systematic review. BMC Complementary and Alternative Medicine. 2005; 5(1). doi: 10.1186/1472-6882-5-11
104. Duy Nguyen BT, Nguyen Thi HY, Nguyen Thi BP, et al. The Roles of Membrane Technology in Artificial Organs: Current Challenges and Perspectives. Membranes. 2021; 11(4): 239. doi: 10.3390/membranes11040239
105. Hafez T, Fuller B. Applications. Advances in Biopreservation. 2006: 197-270. doi: 10.1201/9781420004229.ch9.
106. Fabrizio M. Management of Challenging Cardiopulmonary Bypass Separation. National Institution of Health; 2020.
107. Salgado AJ, Oliveira JM, Martins A, et al. Tissue Engineering and Regenerative Medicine. Tissue Engineering of the Peripheral Nerve: Stem Cells and Regeneration Promoting Factors. Published online 2013: 1-33. doi: 10.1016/b978-0-12-410499-0.00001-0
108. Khan A, Alamry KA, Asiri AM. Multifunctional Biopolymers‐Based Composite Materials for Biomedical Applications: A Systematic Review. ChemistrySelect. 2021; 6(2): 154-176. doi: 10.1002/slct.202003978
109. Morsada Z, Hossain MM, Islam MT, et al. Recent progress in biodegradable and bioresorbable materials: From passive implants to active electronics. Applied Materials Today. 2021; 25: 101257. doi: 10.1016/j.apmt.2021.101257
110. Sharma A, Kokil GR, He Y, et al. Inorganic/organic combination: Inorganic particles/polymer composites for tissue engineering applications. Bioactive Materials. 2023; 24: 535-550. doi: 10.1016/j.bioactmat.2023.01.003
111. Mrzljak A, Novak R, Pandak N, et al. Emerging and neglected zoonoses in transplant population. World Journal of Transplantation. 2020; 10(3): 47-63. doi: 10.5500/wjt.v10.i3.47
112. Gao X, Han S, Zhang R, et al. Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. Journal of Materials Chemistry B. 2019; 7(45): 7075-7089. doi: 10.1039/c9tb01730e
113. Yusuf A, Sodiq A, Giwa A, et al. A review of emerging trends in membrane science and technology for sustainable water treatment. Journal of Cleaner Production. 2020; 266: 121867. doi: 10.1016/j.jclepro.2020.121867
114. Gkotsis P, Banti D, Peleka E, et al. Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies. Processes. 2014; 2(4): 795-866. doi: 10.3390/pr2040795
115. Aristizábal SL, Lively RP, Nunes SP. Solvent and thermally stable polymeric membranes for liquid molecular separations: Recent advances, challenges, and perspectives. Journal of Membrane Science. 2023; 685: 121972. doi: 10.1016/j.memsci.2023.121972
116. Karki S, Hazarika G, Yadav D, et al. Polymeric membranes for industrial applications: Recent progress, challenges and perspectives. Desalination. 2024; 573: 117200. doi: 10.1016/j.desal.2023.117200
117. Goh PS, Matsuura T, Ismail AF, et al. Recent trends in membranes and membrane processes for desalination. Desalination. 2016; 391: 43-60. doi: 10.1016/j.desal.2015.12.016
118. Ghafoori S, Omar M, Koutahzadeh N, et al. New advancements, challenges, and future needs on treatment of oilfield produced water: A state-of-the-art review. Separation and Purification Technology. 2022; 289: 120652. doi: 10.1016/j.seppur.2022.120652
119. Liu G, Jin W, Xu N. Graphene-based membranes. Chemical Society Reviews. 2015; 44(15): 5016-5030. doi: 10.1039/c4cs00423j
120. Ismail AF, Padaki M, Hilal N, et al. Thin film composite membrane—Recent development and future potential. Desalination. 2015; 356: 140-148. doi: 10.1016/j.desal.2014.10.042
121. Han Z yang, Huang L jun, Qu H jiao, et al. A review of performance improvement strategies for graphene oxide-based and graphene-based membranes in water treatment. Journal of Materials Science. 2021; 56(16): 9545-9574. doi: 10.1007/s10853-021-05873-7
122. Sabih Q, Naveed R, Waqas A. Graphene dispersion, functionalization techniques and applications: A review. Synthetic Metals. 2024; 307: 117697-117710. doi: 10.1016/j.synthmet.2024.117697
DOI: https://doi.org/10.24294/jpse8211
Refbacks
- There are currently no refbacks.
Copyright (c) 2024 Mohd Arsalan, Suzain Akhtar, Mohammad Ehtisham Khan
License URL: https://creativecommons.org/licenses/by/4.0/
This site is licensed under a Creative Commons Attribution 4.0 International License.