Abstract
The search for the development of nanostructured materials has led to the study of the properties of their precursors. For the production of nanofibers by the electrospinning process, it is necessary to determine the rheological parameters of the precursor solutions. Since these properties can be influenced by the processing variables and chemical composition of the polymer, this study aims to elucidate the effect of the addition of vinyl monomers in the formulation of nanofibers based on polyacrylonitrile and to determine the optimal parameters for the production of the precursor polymer solution. The effects of temperature and addition of vinyl monomers were evaluated by rheometry, from the analysis of the variation of the viscosity of the solutions, and by microscopy, the morphology of the nanofibers produced. It was observed that the increase in the temperature used to produce the solutions improves the fibers’ properties. Still, there is a relationship between the time of exposure of the polymeric solution to the temperature and the homogeneity of the fibers, which cannot exceed 45 min. The addition of vinyl monomers, to produce PAN-PVA co-polymeric fibers, increases the conductivity and reduces the viscosity of the solutions, resulting in more refined and homogeneous fibers.
Keywords
nanofiber; copolymer; PAN; PVA; electrospinning; rheometry
References
Rahmati M, Mills DK, Urbanska AM, et al. Electrospinning for tissue engineering applications. Progress in Materials Science. 2021; 117: 100721. doi: 10.1016/j.pmatsci.2020.100721
Yalcinkaya F. A review on advanced nanofiber technology for membrane distillation. Journal of Engineered Fibers and Fabrics. 2019; 14: 155892501882490. doi: 10.1177/1558925018824901
Liu Y, Hao M, Chen Z, et al. A review on recent advances in application of electrospun nanofiber materials as biosensors. Current Opinion in Biomedical Engineering. 2020; 13: 174-189. doi: 10.1016/j.cobme.2020.02.001
Uslu E, Gavgali M, Erdal MO, et al. Determination of mechanical properties of polymer matrix composites reinforced with electrospinning N66, PAN, PVA and PVC nanofibers: A comparative study. Materials Today Communications. 2021; 26: 101939. doi: 10.1016/j.mtcomm.2020.101939
Gusmão AP, Rosenberger AG, Muniz EC, et al. Characterization of Microfibers of Carbon Nanotubes Obtained by Electrospinning for Use in Electrochemical Sensor. Journal of Polymers and the Environment. 2020; 29(5): 1551-1565. doi: 10.1007/s10924-020-01964-9
Wang BB, Zhong XX, Zhu J, et al. Single-step synthesis of TiO2/WO3-hybrid nanomaterials in ethanoic acid: Structure and photoluminescence properties. Applied Surface Science. 2021; 562: 150180. doi: 10.1016/j.apsusc.2021.150180
Maduraiveeran G, Jin W. Carbon nanomaterials: Synthesis, properties and applications in electrochemical sensors and energy conversion systems. Materials Science and Engineering: B. 2021; 272: 115341. doi: 10.1016/j.mseb.2021.115341
Baji A, Agarwal K, Oopath SV. Emerging Developments in the Use of Electrospun Fibers and Membranes for Protective Clothing Applications. Polymers. 2020; 12(2): 492. doi: 10.3390/polym12020492
Filiz BC. Application of Electrospun Materials in Catalysis. WILEYonline Library. 2020: 113-130. doi: 10.1002/9781119655039.ch4
Kazemianrad F, Koocheki A, Ghorani B. Encapsulation of caffeine in sandwich structured Alyssum homolocarpum seed gum/PVA/gelatin nanofibers using electrospinning technique. Food Hydrocolloids. 2023; 140: 108604. doi: 10.1016/j.foodhyd.2023.108604
Burts KS, Plisko TV, Bildyukevich AV, et al. Development of dynamic PVA/PAN membranes for pervaporation: Correlation between kinetics of gel layer formation, preparation conditions, and separation performance. Chemical Engineering Research and Design. 2022; 182: 544-557. doi: 10.1016/j.cherd.2022.04.016
Zhan F, Yan X, Li J, et al. Encapsulation of tangeretin in PVA/PAA crosslinking electrospun fibers by emulsion-electrospinning: Morphology characterization, slow-release, and antioxidant activity assessment. Food Chemistry. 2021; 337: 127763. doi: 10.1016/j.foodchem.2020.127763
Nasibi S, Nargesi khoramabadi H, Arefian M, et al. A review of Polyvinyl alcohol/Carboxiy methyl cellulose (PVA/CMC) composites for various applications. Journal of Composites and Compounds. 2020; 2(3): 68-75. doi: 10.29252/jcc.2.2.2
Rodríguez-Rodríguez R, Espinosa-Andrews H, Velasquillo-Martínez C, et al. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2019; 69(1): 1-20. doi: 10.1080/00914037.2019.1581780
Khan R, Haider S, Khan MUA, et al. Fabrication of amine-functionalized and multi-layered PAN-(TiO2)-gelatin nanofibrous wound dressing: In-vitro evaluation. International Journal of Biological Macromolecules. 2023; 253: 127169. doi: 10.1016/j.ijbiomac.2023.127169
Luo C, Guo A, Zhao Y, et al. A high strength, low friction, and biocompatible hydrogel from PVA, chitosan and sodium alginate for articular cartilage. Carbohydrate Polymers. 2022; 286: 119268. doi: 10.1016/j.carbpol.2022.119268
Afshar S, Rashedi S, Nazockdast H, et al. Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system. International Journal of Biological Macromolecules. 2019; 138: 1130-1137. doi: 10.1016/j.ijbiomac.2019.07.053
Hong Thien DV. Electrospun chitosan/pva nanofibers for drug delivery. Vietnam Journal of Science and Technology. 2018; 54(4B): 185. doi: 10.15625/2525-2518/54/4b/12040
Van-Pham DT, Thi Bich Quyen T, Van Toan P, et al. Temperature effects on electrospun chitosan nanofibers. Green Processing and Synthesis. 2020; 9(1): 488-495. doi: 10.1515/gps-2020-0050
Anton F. Method and apparatus for spinning. Google Patents; 1944.
Sasipriya K, Suriyaprabha R, Prabu P, et al. Synthesis and characterisation of polymeric nanofibers poly (vinyl alcohol) and poly (vinyl alcohol)/silica using indigenous electrospinning set up. Materials Research. 2013; 16(4): 824-830. doi: 10.1590/s1516-14392013005000050
Zhengming H, Yanzhong Z, Masaya K, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 2003; 63: 2223-2253. doi: 10.1016/S0266-3538(03)00178-7
Wang H, Feng Y, Fang Z, et al. Fabrication and characterization of electrospun gelatin-heparin nanofibers as vascular tissue engineering. Macromolecular Research. 2013; 21(8): 860-869. doi: 10.1007/s13233-013-1105-7
Faridi MR, Naderi N, Koochaki JA. Needleless electrospinning apparatus. Google Patents; 2016.
Chronakis IS. Micro-/Nano-Fibers by Electrospinning Technology. Micro-Manufacturing Engineering and Technology. William Andrew Publishing; 2010. pp. 264-286. doi: 10.1016/b978-0-8155-1545-6.00016-8
Ghorbani F, Nojehdehyan H, Zamanian A, et al. Synthesis, Physico-chemical Characteristics and Cellular Behavior of Poly (lactic-co-glycolic Acid)/Gelatin Nanofibrous Scaffolds for Engineering Soft Connective Tissues. Advanced Materials Letters. 2016; 7(2): 163-169. doi: 10.5185/amlett.2016.6003
Andrady AL, Ensor DS, Walker TA, Prabhu P. Nanofiber mats and production methods thereof. Google Patents; 2009.
Liu W, Thomopoulos S, Xia Y. Electrospun Nanofibers for Regenerative Medicine. Advanced Healthcare Materials. 2011; 1(1): 10-25. doi: 10.1002/adhm.201100021
Garg K, Bowlin GL. Electrospinning jets and nanofibrous structures. Biomicrofluidics. 2011; 5(1). doi: 10.1063/1.3567097
Liu Y, Wang C. Advanced Nanofibrous Materials Manufacture Technology Based on Electrospinning. Routledge; 2019. doi: 10.1201/9780429085765
Mercante L, Andre R, Macedo J, et al. Electrospun nanofibers and their applications: advances in the last decade (Portuguese). Química Nova; 2021. doi: 10.21577/0100-4042.20170721
Xue J, Wu T, Dai Y, et al. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews. 2019; 119(8): 5298-5415. doi: 10.1021/acs.chemrev.8b00593
Gonçalves LFP, Botezini A, Wittcinski CO, et al. Study of the influence of the parameters of preparation of polymeric solutions obtaining nanofibers by electrospinning. The Journal of Engineering and Exact Sciences. 2022; 8(8): 14838-01e. doi: 10.18540/jcecvl8iss8pp14838-01e
Hulsey S, Absar S, Choi H. Comparative Study of Polymer Dissolution Techniques for Electrospinning. Procedia Manufacturing. 2017; 10: 652-661. doi: 10.1016/j.promfg.2017.07.010
Rodrigo GFC, Juliano EO, Gustavo EP, et al. Electrospinning polymers in solution (Portuguese). Polímeros. 2012. 22(2): 170-177. doi: 10.1590/S0104-1428201200500002
Sebastião VCJ. Polymer Science: A basic text for technologists and engineers (Portuguese). São Paulo: Artliber; 2002.
Haider A, Haider S, Kang IK. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018; 11(8): 1165-1188. doi: 10.1016/j.arabjc.2015.11.015
Mishra RK, Mishra P, Verma K, et al. Electrospinning production of nanofibrous membranes. Environmental Chemistry Letters. 2018; 17(2): 767-800. doi: 10.1007/s10311-018-00838-w
Rômulo FN. Fundamentals of Polymer Rheology (Portuguese). Caxias do Sul, Educ; 1997.
Malkin A, Ilyin S, Roumyantseva T, et al. Rheological Evidence of Gel Formation in Dilute Poly(acrylonitrile) Solutions. Macromolecules. 2012; 46(1): 257-266. doi: 10.1021/ma301423u
Rosell-Llompart J, Grifoll J, Loscertales IG. Electrosprays in the cone-jet mode: From Taylor cone formation to spray development. Journal of Aerosol Science. 2018; 125: 2-31. doi: 10.1016/j.jaerosci.2018.04.008
Copyright (c) 2024 Luiz Fernando Pimenta Gonçalves, Ariandy Botezini, Erika Peterson Gonçalves